

Annual Report
9 November 1961 through 8 November 1962 -

Volume II: Radiation-Cryotemperature Tests

N63 21332

E. T. SMITH

Prepared for George C. Marshall Space Flight Center Huntsville, Alabama

MICROFILM S 5.03 onl

Contract No. NASS-2450 Request No. 1795-468

NUCLEAR AEROSPACE RESEARCH FACILITY

HTREW THE BENKING TO THE WEIGHT

REPRODUCED BY
NATIONAL TECHNICAL
INFORMATION SERVICE
U.S. DEPARTMENT OF COMMERCE
SPRINGFIELD, VA. 22161

INVESTIGATION OF COMBINED EFFECTS OF RADIATION AND VACUUM AND OF RADIATION AND CRYOTEMPERATURES ON ENGINEERING MATERIALS

Annual Report
9 November 1961 through 8 November 1962 •

Volume II: Radiation-Cryotemperature Tests

N63 21332

E. T. SMITH

Prepared for George C. Marshall Space Flight Center Huntsville, Alabama

ALCROFILM 5 122

Contract No. NAS8-2450 Request No. TP85-468

NUCLEAR AEROSPACE RESEARCH FACILITY

operated by

GENERAL DYNAMICS | FORT WORTH

GIIIIIID

NUCLEAR AEROSPACE RESEARCH FACILITY

INVESTIGATION OF COMBINED EFFECTS OF RADIATION AND VACUUM AND OF RADIATION AND CRYOTEMPERATURES ON ENGINEERING MATERIALS.

Annual Report

9 November 1961 through 8 November 1962

Volume II: Radiation-Cryotemperature Tests

E. T. SMITH Jan 5, 1963 261 p 9 rep

Prepared for George C. Marshall Space Flight Center Huntsville, Alabama

Contract No. NAS8-2450 Request No. TP85-468

YNAMICS FORT WORTH, TAK

35/7802

This report was prepared by General Dynamics/Fort Worth under Contract No. NAS8-2450, <u>Investigation of Combined</u>

<u>Effects of Radiation and Vacuum and of Radiation and</u>

<u>Cryotemperatures on Engineering Materials</u>, for the George C.

Marshall Space Flight Center of the National Aeronautics and Space Administration. The work was administered under the technical direction of the Propulsion and Vehicle Engineering Division, Engineering Materials Branch of the George C. Marshall Space Flight Center with Eugene C. McKannan acting as project manager.

A series of tests was performed to measure the combined effects of nuclear radiation and cryotemperatures on a group of nonmetallic spacecraft materials. This group consisted of materials classified as adhesives, seals, thermal insulations, electrical insulations, structural laminates, and thermal-control coatings. Typical tests performed on specimens prepared from the materials included lap-shear strength, ultimate tensile strength, ultimate elongation, stress-strain characteristics, and compressive strength. Special test equipment to submerge the specimens in liquid nitrogen or liquid hydrogen during irradiation and to subsequently perform the above tests was designed and built at General Dynamics/Fort Worth.

Measured properties of the materials as a function of integrated neutron flux and gamma dose are reported and recommendations for use of the various materials in nuclear-powered spacecraft are made.

REPORT SUMMARY

Previous work in the field of radiation effects has shown that drastic changes are induced in various engineering properties of non-metallic materials by incident nuclear radiation. The successful development of a nuclear-powered spacecraft will therefore depend, to a large extent, upon the determination of a series of radiation-resistance dose levels for component materials in the vehicle. These levels will have to be established for both fast-neutron and gamma radiation and will vary with different kinds of materials, location of the material with respect to the radiation source, and also with different associated environments, such as high vacuum and cryotemperature, or the combination of these two.

The purpose of this particular experimental program (conducted under Modification I to NASA Contract NASS-2450) was to measure the effects of the combined environment of nuclear radiation and cryotemperature on the engineering properties of a selection of nonmetallic materials. The materials selected for testing were representative of those most likely to be used in spacecraft of this type and consisted of two materials from each of the categories of adhesives, seals, thermal insulations, electrical insulations, structural laminates, and thermal-control coatings. Representative tests included those sufficient to measure ultimate tensile strength, ultimate elongation, breaking factor, tensile-shear strength, compressive strength, stress-strain in tension, stress-

strain in compression, and spectral reflectivity. The radiation source for the experiment was the Ground Test Reactor (GTR) located at the Nuclear Aerospace Research Facility (NARF), General Dynamics Corporation, Fort Worth, Texas.

The procedure for the cryotemperature tests was to position the test specimens in the cryogen chamber of the experimental assemblies and locate the assemblies next to the reactor face. The irradiation run was carried out with the specimens submerged in cryogen fluid. Operation of the reactor was terminated after the required radiation dose was achieved, and the specimens were then pulled in tension and compression without intervening warmup. Nine data points were recorded during each test on each material. These included those obtainable from all combinations of three radiation doses (zero, low, and high) and three temperatures (ambient, -320°F, and -423°F). Ambient-temperature irradiations were conducted in an air environment with specimen temperatures ranging from 110°F to 143°F, and the subsequent tensile and compression tests were performed with an Instron test machine in the Irradiated Materials Laboratory.

A brief resume of the results of the tests on each material, along with recommendations for its use, is given below:

Adhesives

Hexcel 1252. This material demonstrated increased tensileshear strength after irradiation at room temperature. At cryotemperatures, the strength before irradiation was considerably higher than the room-temperature value. Radiation then served to reduce this strength somewhat, but the value still remained higher than the room-temperature/no-irradiation level. The material is therefore highly recommended for use in this combination environment, up to the tested dose level of 5×10^{10} ergs/gm(C) of gamma-type radiation.

Metlbond 406. This adhesive suffered severe degradation in tensile-shear strength at all temperatures after irradiation to a dose level of about $3x10^{10}$ ergs/gm(C). It is not recommended for use under these environmental conditions.

Seals

Teflon TFE. This material was tested at ambient temperature in air only. After a relatively low dose of radiation under these conditions the test specimens crumbled to powder. Further testing is needed before recommendations can be made.

Kel-F-81. This fluorocarbon plastic was tested under all conditions. Its properties were excellent under no-irradiation conditions, but relatively small doses of gamma and neutron radiation were sufficient to cause significant degradation in tensile strength and severe embrittlement. It is not recommended for use in a radiation environment at any temperature.

Thermal Insulations

Stafoam AA402 and Styrofoam 22. Results of tests were similar for both of these materials. Their compressive strength at cryotemperatures increased with incident radiation up to a gamma dose of about 5×10^9 ergs/gm(C). Beyond this dose level, the strength dropped off severely. Irradiation at ambient temperature ($\sim 120^{\circ}$ F) served to reduce the compressive strength significantly. Both materials are recommended for use under relatively low radiation environments at cryotemperatures.

Electrical Insulations

DuPont H-Film and Mylar-C. These materials were tested in tension in thin-film form. Contrasting values in tensile strength for different radiation doses and different temperatures were noted. Further testing is needed, and specific recommendations are not possible at this time.

Structural Laminates

Conolon 506 and Paraplex P-43. Tensile properties of these two laminates were measured and found to be similar. The

ultimate tensile strength of both materials was higher at cryotemperatures than at room temperature, as could be expected, and remained higher after doses to 5×10^{10} ergs/gm(C). Both materials are recommended for use under a radiation-cryotemperature environment to the above-mentioned dose level.

Thermal-Control Coatings

Skyspar A-423-SA9185 and Sherwin-Williams W-49-BC12. After irradiation at room temperature, the subsequently measured optical properties of these two coatings showed variations as a function of radiation dose. However, after irradiation at cryotemperatures, the properties remained fairly constant as a function of radiation dose. No recommendations are attempted with the data available from these tests, but the data shown in the text is suitable for possible correlation with results from other related tests.

A series of tests to measure the combined effects of nuclear radiation and high vacuum was also conducted at NARF under the same NASA contract. The experiment utilized two vacuum chambers designed to operate in conjunction with the reactor. Tests were performed in air after irradiation in air and in vacuum and air after irradiation in vacuum. The experiment is described in Volume I of this report.

FOREWORD

Work under this contract was performed by the Nuclear Aerospace Research Facility (NARF) at General Dynamics/Fort Worth. It was conducted in two separate sections under NASA Contract No. NAS8-2450. The basic section, an experiment to measure the combined effects of nuclear radiation and high vacuum on materials, was initiated November 9, 1961, and carried out under the direction of E. E. Kerlin. The work is described in Volume I of this report. The second section, an experiment to measure the combined effects of nuclear radiation and cryotemperatures on a selected group of nonmetallic materials, was initiated on July 1, 1962, as Modification I to the original contract. The work was performed under the direction of E. T. Smith and is described in this volume, Volume II, of the report.

The author wishes to acknowledge the valuable services of the following people who have helped make this experiment possible: J. W. Gordon for assistance in material selection and preparation; F. F. Fleming and W. E. Ivie for the nuclear-radiation measurements; E. E. Baggett, D. C. Butson, and E. M. Nelson for assistance in equipment design; R. E. Miller for design and operation of the electronic test instrumentation; and W. M. Brandenburg of GD/Astronautics for conducting the optical measurements on thermal-control coatings.

TABLE OF CONTENTS

			<u>Page</u>
	ABST	PRACT	3
	REPO	ORT SUMMARY	5
	FORE	EWORD	. 9
	LIST	OF FIGURES	15
	LIST	OF TABLES	23
I.	INTR	RODUCTION	29
II.	TEST	FACILITY AND EQUIPMENT	31
	2.1	Radiation Effects Testing System	31
	2.2	Cryotemperature Experimental Assemblies	35
	2.3	Experimental-Assembly Accessory Equipment	43
	2.4	Ambient-Temperature Irradiation Equipment	46
	2.5	Test Instrumentation	49
III.	RADI	ATION ENVIRONMENT	55
	3.1	GTR Neutron Spectrum Determination	55
		3.1.1 Analytical GTR Neutron Spectrum 3.1.2 Experimental GTR Neutron Spectrum	55 57
	3.2	Nuclear-Measurement Procedures	57
		3.2.1 Ambient-Temperature Irradiation 3.2.2 Liquid-Nitrogen Irradiation 3.2.3 Liquid-Hydrogen Irradiation	59 59 63
	3.3	Nuclear-Measurement Results	65
		3.3.1 Ambient-Temperature Irradiation 3.3.2 Liquid-Nitrogen Irradiation 3.3.3 Liquid-Hydrogen Irradiation	65 65 73

TABLE OF CONTENTS (cont'd)

		Page
IV.	TESTING PROCEDURES	79
	4.1 Material A: Hexcel 1252	82
	4.2 Material B: Metlbond 406	83
	4.3 Material C: Teflon TFE	85
	4.4 Material D: Kel-F-81	87
	4.5 Material E: Stafoam AA-402	90
	4.6 Material F: Styrofoam 22	94
	4.7 Material G: DuPont H-Film	94
	4.8 Material H: DuPont Mylar-C	97
	4.9 Material I: Conolon 506	97
	4.10 Material J: Paraplex P-43	100
	4.11 Materials K and L: Thermal-Control Coatings	100
v.	DISCUSSION OF RESULTS	107
	5.1 Material A: Hexcel 1252	108
	5.2 Material B: Metlbond 406	111
	5.3 Material C: Teflon TFE	112
	5.4 Material D: Kel-F-81	112
	5.5 Material E: Stafoam AA-402	114
	5.6 Material F: Styrofoam 22	115
	5.7 Materials G (DuPont H-Film) and H (DuPont My)	lar-C) 116
	5.8 Material I: Conolon 506	116
	5.9 Material J: Paraplex P-43	118
	5.10 Materials K and L: Thermal-Control Coatings	119

TABLE OF CONTENTS (contid)

		Page
VI.	CONCLUSIONS AND RECOMMENDATIONS	17 1
	6.1 Test Techniques and Experimental Equipment	171
	6.2 Dosimetry Measurements	173
	6.3 Test Results and Recommendations for Materials	175
	APPENDIX	179
	REFERENCES	255
	DISTRIBUTION	257

LIST OF FIGURES

<u>Figure</u>		Page
2.1	Reactor Pool	32
2.2	Radiation Effects Testing System	33
2.3	Various Views of Experimental Assembly	36
2.4	Tensile Specimens Mounted in Experimental Assembly	39
2.5	Thin-Film and Compression-Button Specimens Mounted in Experimental Assembly	40
2.6	O-Ring Pressure Test Chambers	42
2.7	Model TT Instron Machine with Hydraulic Servo-System Master-Cylinder Installed	44
2.8	Hydraulic Servo-System Slave-Cylinder Selector Panel	45
2.9	Irradiated Area with Experimental Assemblies Installed	1 47
2.10	Rack Framework for Ambient Irradiation Showing Typical Material and Dosimetry Packet Arrangement	l 48
2.11	Instrumentation for Experimental Assembly	50
2.12	Schematic Diagram of Liquid-Level Indicator	51
3.1	Analytical GTR Neutron Spectrum	56
3.2	Representative Neutron Spectrum in the East Cryogen Chambers Midway Between Front and Back Sample Locations on Vertical Centerline	58
3.3	Layout of Materials and Dosimetry Packets on Rack 1 for Ambient Irradiation	60
3.4	Layout of Materials and Dosimetry Packets on Rack 2 for Ambient Irradiation	61
3. 5	Layout of Materials and Dosimetry Packets on Rack 3 for Ambient Irradiation	62
3.6	Layout of Dosimetry Packets for LNo Irradiation	64

Figure		Page
3.7	Layout of Dosimetry Packets for LH2 Irradiation	64
3.8	Neutron Flux Midway Between Front and Back Sample Positions: LN ₂ Irradiation; East Chamber	68
3.9	Neutron Flux Midway Between Front and Back Sample Positions: LN ₂ Irradiation; North Chamber	69
3.10	Gamma Dose Rate Midway Between Front and Back Sample Positions: LN2 Irradiation; East Chamber	71
3.11	Neutron Flux Midway Between Front and Back Sample Positions: LH ₂ Irradiation; East Chamber	74
3.12	Neutron Flux Midway Between Front and Back Sample Positions: LH2 Irradiation; North Chamber	7 5
3.13	Gamma Dose Rate Midway Between Front and Back Sample Positions: LH2 Irradiation; North and East Chambers	77
4.1	Material A Specimens	84
4.2	Material B Specimens	86
4.3	Material C Specimens	88
4.4	Material D Specimens	91
4.5	Representative Examples of Instron and Dynamometer Traces	93
4.6	Material E Specimens	95
4.7	Material F Specimens	96
4.8	Material G Specimens	98
4.9	Material I Specimens	101
4.10	Material J Specimens	102
4.11	Material K and L Specimens	106

Figure		Page
5.1	Stress to Break vs Gamma Dose for Three Different Temperatures: Material A (Hexcel 1252)	122
5.2	Stress to Break vs Gamma Dose for Three Different Temperatures: Material B (Metlbond 406)	123
5.3	Breaking Factor vs Gamma Dose for Ambient Temperature: Material C (Teflon TFE)	124
5.4	Percent Total Elongation vs Gamma Dose for Ambient Temperature: Material C (Teflon TFE)	125
5.5	Ultimate Tensile Strength vs Gamma Dose for Three Different Temperatures: Material D (Kel-F-81)	126
5.6	Percent Total Elongation (Pull-Rod Values) vs Gamma Dose for Three Different Temperatures: Material D (Kel-F-81)	127
5.7	Percent Total Elongation (Calculated Extensometer Values) vs Gamma Dose for Three Different Temperatures: Material D (Kel-F-81)	128
5.8	Stress vs Strain (Pull-Rod Values) for Three Different Temperatures: Material D (Kel-F-81); Unirradiated (Control)	129
5.9	Stress vs Strain (Calculated Extensometer Values) for Three Different Temperatures: Material D (Kel-F-81); Unirradiated (Control)	130
5.10	Stress vs Strain (Pull-Rod Values) for Three Different Temperatures: Material D (Kel-F-81); Low-Dose Exposure	131
5.11	Stress vs Strain (Calculated Extensometer Values) for Three Different Temperatures: Material D (Kel-F-81); Low-Dose Exposure	132
5.12	Stress vs Strain (Pull-Rod Values) for Two Different Temperatures: Material D (Kel-F-81); High-Dose Exposure	133
5.13	Stress vs Strain (Calculated Extensometer Values) for Three Different Temperatures: Material D (Kel-F-81); High-Dose Exposure	134
5.14	Force to Compress 25% vs Gamma Dose for Three Different Temperatures: Material E (Stafoam AA402)	135

Figure		Page
5.15	Compressive Load vs Deflection for Three Different Temperatures: Material E (Stafoam AA402); Unirradiated (Control)	136
5.16	Compressive Load vs Deflection for Three Different Temperatures: Material E (Stafoam AA402); Low-Dose Exposure	137
5.17	Compressive Load vs Deflection for Three Different Temperatures: Material E (Stafoam AA402); High-Dose Exposure	138
5.18	Force to Compress 25% vs Gamma Dose for Three Different Temperatures: Material F (Styrofoam 22)	139
5.19	Compressive Load vs Deflection for Three Different Temperatures: Material F (Styrofoam 22); Unirradiated (Control)	140
5.20	Compressive Load vs Deflection for Three Different Temperatures: Material F (Styrofoam 22); Low-Dose Exposure	141
5.21	Compressive Load vs Deflection for Three Different Temperatures: Material F (Styrofoam 22); High-Dose Exposure	142
5.22	Breaking Factor vs Gamma Dose for Three Different Temperatures: Material G (H-Film)	143
5.23	Breaking Factor vs Gamma Dose for Three Different Temperatures: Material H (Mylar-C)	144
5.24	Percent Total Elongation vs Gamma Dose for Three Different Temperatures: Material G (H-Film)	145
5.25	Percent Total Elongation vs Gamma Dose for Three Different Temperatures: Material H (Mylar-C)	146
5.26	Ultimate Tensile Strength vs Gamma Dose for Three Different Temperatures: Material I (Conolon 506)	147
5.27	Percent Total Elongation (Pull-Rod Values) vs Gamma Dose for Three Different Temperatures: Material I (Conolon 506)	148

Figure	<u>1</u>	Page
5,28	Percent Total Elongation (Calculated Extensometer Values) vs Gamma Dose for Three Different Temperatures: Material I (Conolon 506)	149
5,29	Stress vs Strain (Pull-Rod Values) for Three Different Temperatures: Material I (Conolon 506); Unirradiated (Control)	150
5.30	Stress vs Strain (Pull-Rod Values) for Three Different Temperatures: Material I (Conolon 506); Low-Dose Exposure	151
5.31	Stress vs Strain (Pull-Rod Values) for Two Different Temperatures: Material I (Conolon 506); High-Dose Exposure	152
5.32	Stress vs Strain (Calculated Extensometer Values) for Three Different Temperatures: Material I (Conolog 506); Unirradiated (Control)	n 153
5•33	Stress vs Strain (Calculated Extensometer Values) for Three Different Temperatures: Material I (Conolon 500 Low-Dose Exposure	
5.34	Stress vs Strain (Calculated Extensometer Values) for Two Different Temperatures: Material I (Conolon 506) High-Dose Exposure	
5•35	Ultimate Tensile Strength vs Gamma Dose for Three Different Temperatures: Material J (Paraplex P-43)	156
5•36	Percent Total Elongation (Pull-Rod Values) vs Gamma Dose for Three Different Temperatures: Material J (Paraplex P-43)	157
5.37	Percent Total Elongation (Calculated Extensometer Values) vs Gamma Dose for Three Different Temperature Material J (Paraplex P-43)	s: 158
5.38	Stress vs Strain (Pull-Rod Values) for Three Differen Temperatures: Material J (Paraplex P-43); Unirradiat (Control)	t ed 159

Figure	<u>Pa</u>	age
5•39	Stress vs Strain (Pull-Rod Values) for Three Different Temperatures: Material J (Paraplex P-43); Low-Dose Exposure	160
5.40	Stress vs Strain (Pull-Rod Values) for Two Different Temperatures: Material J (Paraplex P-43); High-Dose Exposure	161
5.41	Stress vs Strain (Calculated Extensometer Values) for Three Different Temperatures: Material J (Paraplex P-43); Unirradiated (Control)	162
5.42	Stress vs Strain (Calculated Extensometer Values) for Three Different Temperatures: Material J (Paraplex P-43); Low-Dose Exposure	163
5.43	Stress vs Strain (Calculated Extensometer Values) for Two Different Temperatures: Material J (Paraplex P-43 High-Dose Exposure); 164
5.44	Average α/ϵ at 100° K vs Gamma Dose for Three Different Temperatures: Material K (Skyspar A423-SA9185)	165
5.45	Average α/ε at 300° K vs Gamma Dose for Three Different Temperatures: Material K (Skyspar A423-SA9185)	166
5.46	Average α/ε at $500^{\rm O}{\rm K}$ vs Gamma Dose for Three Different Temperatures: Material K (Skyspar A423-SA9185)	167
5.47	Average α/ϵ at 100° K vs Gamma Dose for Three Different Temperatures: Material L ("-19-BC-12)	168
5.48	Average α/ϵ at 300°K vs Gamma Dose for Three Different Temperatures: Material L (2-49-BC-12)	169
5.49	Average α/ε at 500°K vs Gamma Dose for Three Different Temperatures: Material L (-49-BC-12)	170

Figure		<u>Page</u>
A-1	Monochromatic Reflectivity and Absorptivity: Material K (Skyspar A423-SA9184); Unirradiated; Ambient Temperature	241
A-2	Monochromatic Reflectivity and Absorptivity: Material K (Skyspar A423-SA9184); Low Dose; Ambient Temperature	242
A-3	Monochromatic Reflectivity and Absorptivity: Material K (Skyspar A423-SA9184); High Dose; Ambient Temperature	243
A-4	Monochromatic Reflectivity and Absorptivity: Material K (Skyspar A423-SA9184); Low Dose; LN2 Temperature	244
A-5	Monochromatic Reflectivity and Absorptivity: Material K (Skyspar A423-SA9184); High Dose; LN ₂ Temperature	245
A-6	Monochromatic Reflectivity and Absorptivity: Material K (Skyspar A423-SA9184); Low Dose; LH ₂ Temperature	246
A-7	Monochromatic Reflectivity and Absorptivity: Material K (Skyspar A423-SA9184); High Dose; LH ₂ Temperature	247
A-8	Monochromatic Reflectivity and Absorptivity: Material L (W-49-BC-12); Unirradiated; Ambient Temperature	24 8
A-9	Monochromatic Reflectivity and Absorptivity: Material L (W-49-BC-12); Low Dose; Ambient Temperature	24 9
A-10	Monochromatic Reflectivity and Absorptivity: Material L (W-49-BC-12); High Dose; Ambient Temperature	250
A-11	Monochromatic Reflectivity and Absorptivity: Material L (W-49-BC-12); Low and High Doses; LN ₂ Temperature	251

Figure		Page
A-12	Monochromatic Reflectivity and Absorptivity: Material L (W-49-BC-12); Low Dose; LH ₂ Temperature	252
A-13	Monochromatic Reflectivity and Absorptivity: Material L (W-49-BC-12); High Dose; LH ₂ Temperature	253

LIST OF TABLES

<u>Table</u>		Page
3.1	Radiation Exposure Levels for Ambient Irradiation	66
3.2	Results from Nitrous-Oxide Gamma Dosimeters Irradiated in Liquid Nitrogen	73
3.3	Neutron-Flux Ratios in East and North Cryogen Chambers	76
4.1	Materials Test Plan for Radiation-Cryotemperature Tests	80
4,2	Equipment for Spectral Reflectivity Tests	105
5.1	Average Low Radiation Exposures	109
5.2	Average High Radiation Exposures	110
A-1	Radiation-Cryotemperature Test Data: Material A (Hexcel 1252)	181
A-2	Radiation-Cryotemperature Test Data: Material B (Metlbond 406)	182
A-3	Radiation-Cryotemperature Test Data: Material C (Teflon TFE); Ambient Temperature; Unirradiated	183
A-4	Radiation-Cryotemperature Test Data: Material D (Kel-F-81); Ambient Temperature; Unirradiated	184
A-5	Radiation-Cryotemperature Test Data: Material D (Kel-F-81); Ambient Temperature; Irradiated	.85
A-6	Radiation-Cryotemperature Test Data: Material D (Kel-F-81); LN ₂ Temperature; Unirradiated	186
A-7	Radiation-Cryotemperature Test Data: Material D (Kel-F-81); LN ₂ Temperature; Low Dose	187
8-A	Radiation-Cryotemperature Test Data: Material D (Kel-F-81); LN ₂ Temperature; High Dose	188
A-9	Radiation-Cryotemperature Test Data: Material D (Kel-F-81); LH _O Temperature; Unirradiated	189

<u>Table</u>		Page
A-10	Radiation-Cryotemperature Test Data: Material D (Kel-F-81); LH ₂ Temperature; Low Dose	190
A-11	Radiation-Cryotemperature Test Data: Material D (Kel-F-81); LH ₂ Temperature; High Dose	191
A-12	Radiation-Cryotemperature Test Data: Material E (Stafoam AA402); Ambient Temperature; Unirradiated	192
A-13	Radiation-Cryotemperature Test Data: Material E (Stafoam AA402); Ambient Temperature; Irradiated	193
A-14	Radiation-Cryotemperature Test Data: Material E (Stafoam AA402); LN ₂ Temperature; Unirradiated	194
A-15	Radiation-Cryotemperature Test Data: Material E (Stafoam AA402); LN2 Temperature; Irradiated	195
A- 16	Radiation-Cryotemperature Test Data: Material E (Stafoam AA402); LH2 Temperature; Unirradiated	196
A-17	Radiation-Cryotemperature Test Data: Material E (Stafoam AA402); LH ₂ Temperature; Irradiated	197
A-18	Radiation-Cryotemperature Test Data: Material F (Styrofoam 22); Ambient Temperature; Unirradiated	198
A-19	Radiation-Cryotemperature Test Data: Material F (Styrofoam 22); Ambient Temperature; Irradiated	199
A-20	Radiation-Cryotemperature Test Data: Material F (Styrofoam 22); LN ₂ Temperature; Unirradiated	200
A-21	Radiation-Cryotemperature Test Data: Material F (Styrofoam 22); LN ₂ Temperature; Irradiated	201
A-22	Radiation-Cryotemperature Test Data: Material F (Styrofoam 22); LH2 Temperature; Unirradiated	202
A-23	Radiation-Cryotemperature Test Data: Material F (Styrofoam 22): LHo Temperature: Irradiated	203

Table		Page
A-24	Radiation-Cryotemperature Test Data: Material G (H-Film); Ambient Temperature; Unirradiated	204
A-25	Radiation-Cryotemperature Test Data: Material G (H-Film); Ambient Temperature; Low Dose	205
A-26	Radiation-Cryotemperature Test Data: Material G (H-Film); Ambient Temperature; High Dose	206
A-27	Radiation-Cryotemperature Test Data: Material G (H-Film); LN2 Temperature; Unirradiated	207
A-28	Radiation-Cryotemperature Test Data: Material G (H-Film); LN2 Temperature; Low Dose	208
A-29	Radiation-Cryotemperature Test Data: Material G (H-Film); LN2 Temperature; High Dose	209
A-30	Radiation-Cryotemperature Test Data: Material G (H-Film); LH2 Temperature; Unirradiated	210
A-31	Radiation-Cryotemperature Test Data: Material G (H-Film); LH2 Temperature; Low Dose	211
A-32	Radiation-Cryotemperature Test Data: Material G (H-Film); LH ₂ Temperature; High Dose	212
A-33	Radiation-Cryotemperature Test Data: Material H (Mylar-C); Ambient Temperature; Unirradiated	213
A-34	Radiation-Cryotemperature Test Data: Material H (Mylar-C); Ambient Temperature; Low Dose	214
A-35	Radiation-Cryotemperature Test Data: Material H (Mylar-C); Ambient Temperature; High Dose	215
A-36	Radiation-Cryotemperature Test Data: Material H (Mylar-C); LN2 Temperature; Unirradiated	216
A-37	Radiation-Cryotemperature Test Data: Material H (Mylar-C); LN ₂ Temperature; Low Dose	217

Page		<u>Table</u>
218	Radiation-Cryotemperature Test Data: Material H (Mylar-C); LN ₂ Temperature; High Dose	A-38
219	Radiation-Cryotemperature Test Data: Material H (Mylar-C); LH ₂ Temperature; Unirradiated	A-39
220	Radiation-Cryotemperature Test Data: Material H (Mylar-C); LH ₂ Temperature; Low Dose	A-40
221	Radiation-Cryotemperature Test Data: Material I (Conolon 506); Ambient Temperature; Unirradiated	A-41
222	Radiation-Cryotemperature Test Data: Material I (Conolon 506); Ambient Temperature; Low Dose	A-42
223	Radiation-Cryotemperature Test Data: Material I (Conolon 506); Ambient Temperature; High Dose	A-43
224	Radiation-Cryotemperature Test Data: Material I (Conolon 506); LN ₂ Temperature; Unirradiated	A-44
225	Radiation-Cryotemperature Test Data: Material I (Conolon 506); LN ₂ Temperature; Low Dose	A-45
226	Radiation-Cryotemperature Test Data: Material I (Conolon 506); LN ₂ Temperature; High Dose	A- 46
227	Radiation-Cryotemperature Test Data: Material I (Conolon 506); LH ₂ Temperature; Unirradiated	A-47
228	Radiation-Cryotemperature Test Data: Material I (Conolon 506); LH ₂ Temperature; Low Dose	A-48
ed 229	-	A- 49
230	Radiation-Cryotemperature Test Data: Material J (Paraplex P-43); Ambient Temperature; Low Dose	A-50
231		A-51

<u>Table</u>		Page
A-52	Radiation-Cryotemperature Test Data: Material J (Paraplex P-43); LN ₂ Temperature; Unirradiated	232
A-53	Radiation-Cryotemperature Test Data: Material J (Paraplex P-43); LN ₂ Temperature; Low Dose	233
A- 54	Radiation-Cryotemperature Test Data: Material J (Paraplex P-43); LN ₂ Temperature; High Dose	234
A- 55	Radiation-Cryotemperature Test Data: Material J (Paraplex P-43); LH ₂ Temperature: Unirradiated	235
A- 56	Radiation-Cryotemperature Test Data: Material J (Paraplex P-43); LH ₂ Temperature; Low Dose	236
A- 57	Radiation-Cryotemperature Test Data: Material K (Skyspar A-423 SA9185); α/ε Measurements (Raw Data)	237
A- 58	Radiation-Cryotemperature Test Data: Material K (Skyspar A-423 SA9185); α/ϵ Measurements (Average)	238
A- 59	Radiation-Cryotemperature Test Data: Material L (W-49-BC-12); α/ϵ Measurements (Raw Data)	239
A- 60	Radiation-Cryotemperature Test Data: Material L (W-49-BC-12); α/ϵ Measurements (Average)	240

I. INTRODUCTION

Considerable effort has been expended in the past several years toward measuring the effects, individually, of nuclear radiation and of cryotemperatures on various classes of materials, particularly those materials which have been used in or have potential application to space vehicles. Very little data have been accumulated, though, which show the combined effects of these two environments. This has been due, in part, at least, to the difficulty in designing and fabricating equipment suitable for performing tests under these extreme conditions.

During this experimental program, which was designed to provide combined-environment data, tests were performed on six different classes of materials: namely, adhesives, seals, thermal insulations, electrical insulations, structural laminates, and thermal-control coatings. Two materials in each class were tested.

The selection of specific materials for testing was based upon considerations involving the past history of their use in spacecraft, potential use in this application, and knowledge of their properties after separate exposure to radiation and cryotemperatures. Measurements included tensile-shear strength, ultimate tensile strength, ultimate elongation, stress-strain, leakage, compression-deflection, and spectral reflectivity. Tests for each material were performed under nine different conditions, consisting of the possible combinations of three different

radiation doses (zero, relatively low, and relatively high) and three different temperatures (ambient, -320°F, and -423°F).

In the low-temperature portions of the experiment, irradiation of the material specimens was carried out with the specimens submerged in liquid nitrogen (LN₂) and, again, in liquid hydrogen (LH₂). Subsequent tests (with the exception of the reflectivity measurements on the thermal-control coatings) were then performed on the materials at these cryotemperatures without an intervening warmup. This factor in the experiment should be emphasized. It points to the fact that any annealing out of radiation-induced defects resulting from warm-up to room temperature prior to testing was minimized, thus providing a measurement of the true conditions that exist in materials which have been exposed to and are to be used in this combined environment.

II. TEST FACILITY AND EQUIPMENT

2.1 Radiation Effects Testing System

The Ground Test Reactor (GTR) is a heterogeneous, highly enriched, thermal reactor which utlizes water as neutron moderator and reflector, as radiation shielding, and as coolant. Maximum power generation is three megawatts. A detailed description of the GTR may be found in Reference 1.

The irradiation pool (Fig. 2.1) is divided into two sections - one north, one south. The south section forms the reactor pool and is filled with water, while the north section is the irradiation cell and is kept dry. The reactor closet in the center of the pool divider extends into the irradiation cell to provide three sides for irradiation. The corresponding irradiation positions - east, north, and west - are clearly visible in Figure 2.1. Also shown in the figure is the reactor in the fully retracted position on the horizontal positioning mechanism.

Adjacent to the north wall of the irradiation cell is the handling area. Equipment permanently installed in the handling area includes a gas-monitoring system, a Davis explosion meter, and environmental conditioning equipment for the Radiation Effects Testing System. The auxiliary equipment necessary for cryogenic experiments was also located in this area. Figure 2.2 is a view, looking south, of the Radiation Effects Testing System. It shows the concrete pool shields, the irradiation pool, the shuttle system, and the handling area.

Figure 2.1 Reactor Pool

Figure 2.2 Radiation Effects Testing System

The reactor closet is partially covered by $\frac{1}{4}$ -in.-thick boral to attenuate thermal neutrons. The boral extends 36 inches east and west along the pool divider from the closet, and 36 inches up and down from the horizontal centerline of the reactor. The centerline is 57 inches above the cell floor.

The reactor, in an aluminum enclosure to facilitate coolingwater flow, is mounted on a horizontal positioning mechanism in the south section. This mechanism enables the reactor to be positioned at any distance from 2 to 90 inches from the north face of the closet.

An integral part of the NARF Radiation Effects Testing Facility is the shuttle system. This system consists of cabledriven dollies mounted on three sets of parallel tracks. The tracks extend from the irradiation positions adjacent to the reactor closet, up an incline to the north wall of the irradiation cell, and to a loading area on the ramp just north of the handling area. The system can be operated from either the control room or the dolly motor-drive shed on the north ramp. Full-coverage televiewing of the entire shuttle system is provided by means of a closed-circuit television system in the control room.

Cryotemperature and ambient-temperature irradiation tests were performed on the east and north irradiation positions. The experimental assemblies and the ambient-temperature irradiation racks were secured on the dollies and lowered into position by means of the shuttle system.

2.2 Cryotemperature Experimental Assemblies

Previous experience of General Dynamics personnel in the use of remotely operated tensile-testing apparatus in conjunction with the Ground Test Reactor contributed significantly to the design of three experimental assemblies constructed for use in this experiment. Prime requirements which were incorporated into the experiment included (1) means for applying tensile and compression forces remotely to material specimens submerged in cryogen fluids and (2) means for measuring the magnitude of these forces and the resulting strain in the specimens. In addition, each assembly was required to handle over 60 specimens in a single loading.

In Figure 2.3 are photographs of the front, side, and back of the complete assembly mounted in a support frame. In actual operation, this frame, with the assembly installed, latches to an escalator system which automatically positions the assembly next to the face of the reactor. Also in Figure 2.3 is an exploded view of the assembly. As shown in this photograph, the assembly consists of two main sections: (1) the upper section, containing ten hydraulic cylinders, the cylinder mounting structure, ten pull rods, specimenmounting yokes, and ten linear variable differential transformers (LVDT's); and (2) a lower section, or quadruple-walled Dewar, to contain the specimens and the cryogen.

The hydraulic-cylinder mounting framework and specimen-mounting framework are bolted, respectively, to the top and bottom of a flange which, in turn, mates to the top of the Dewar. The

illing... These tides ecost document to the

35

Figure 2.3 Various Views of Experimental Assembly

pull rods operate through tubular risers welded to the top of the flange. These risers contain Teflon shaft seals. Various other drillings and tappings through this top flange contain the cryogen inlet tube, evaporated-cryogen outlet pipe, thermocouple leads, strain-gage leads, pressure transducer, and liquid-level probe. Prior to operation of the system, particularly with LH₂ as the cryogen, all openings to the cryogen chamber are sealed completely to prevent even the minutest of gas leaks.

The Dewar, or cryogen chamber, is a quadruple-walled vessel with an 8 by 24 by 26 in.-deep inner chamber to receive the cryogen, test specimens, and specimen-mounting apparatus. Surrounding this inner chamber on all sides is a $\frac{1}{2}$ -in.-thick vacuum chamber which is pumped to a pressure of 5 microns just prior to operation of the assembly. Surrounding the vacuum chamber on all sides is a $\frac{1}{2}$ -in.-thick chamber to contain LN₂ when LH₂ is used in the inner chamber. Then, surrounding the LN₂ chamber on all sides is a $1\frac{1}{2}$ -in.-thick outer chamber which is filled with Refrasil, an inert SiO₂ thermalinsulation material. Ports for the vacuum and LN₂ insulation chambers are positioned on the back side of the Dewar.

The LVDT's are used to measure movement of the test-specimen pull rods to an accuracy of ±0.001 inch over a linear range of 0.60 inch. The transformer core is fastened rigidly to the pull rod, and the transformer coil is mounted to the upper structure framework through a gear-and-rack unit. A small electric motor is used in conjunction with this unit to reposition the transformer

coil over a 4-in. vertical range. This repositioning of the coil is necessary to permit linear measurements of pull-rod movement over a total pull-rod travel of four inches.

One of the three experimental assemblies utilizes five 0- to 1000-1b dynamometers to measure load on the specimens directly, rather than indirectly with an Instron testing machine through the hydraulic servo system. These units are installed in the assembly just below the hydraulic cylinders by breaking and removing a section of the pull rod.

Figures 2.4 and 2.5 are closeups of test-specimen mounting apparatus. The center rod on the front row in Figure 2.4 contains four dumbbell-type specimens of structural-laminate material. Each specimen contains glued-on doublers on both ends. The upper clevis rod passes through a single $\frac{1}{2}$ -in.-diam hole in the top of each specimen. The bottom of each specimen contains a $\frac{1}{2}$ -in.-wide slot of varying length to permit four specimens to be pulled and broken in tension, sequentially, with one upward movement of the pull rod.

Figure 2.5 shows two thin-film testers on the left and three compression-button testers on the right. Each film tester is arranged to pull four thin films in tension, sequentially, with one upward movement of the pull rod. The ends of the films are wrapped and glued to $\frac{1}{4}$ -in.-diam spools which have a milled "flat" on each end. These flats slide in varying-length slots in the lower section of the film tester to permit sequential pulling of each film. In addition, the flats serve to prevent rotation of the spools when the film is in tension.

Figure 2.4 Tensile Specimens Mounted in Experimental Assembly

Figure 2.5 Thin-Film and Compression-Button Specimens Mounted in Experimental Assembly

The compression-button testers consist of upper and lower yokes which mount to the standard clevis. The end of each yoke contains a flat plate for compressing the specimen. The specimen rests on the upper-yoke plate and rises with upward pull-rod movement to meet the lower-yoke plate and thus undergo compression.

Figure 2.6 is a closeup of two pressure chambers containing an 0-ring seal made from one of the test materials. These chambers are pressurized with helium gas to 50 psi during irradiation. During a test, the supply valve is closed and pressure drops are monitored. Losses in pressure during the test and the results of postirradiation inspection and testing of the 0-ring are both considered in evaluating the radiation resistance of the material at cryotemperatures.

The liquid-level probe can be seen hanging vertically along the left-hand edge of Figure 2.6. The cryogen supply tube is located between the two O-ring testers.

The Dewar for the experimental assembly was fabricated completely from type 6061-T6 aluminum. The top flange and hydraulic-cylinder support frame are also 6061-T6 aluminum. The box frame below the top flange, as well as the upper and lower clevises and the specimen-mounting apparatus, is fabricated from type 321 stainless steel.

All design and fabrication work on the experimental assemblies was performed at General Dynamics/Fort Worth.

NPC 17,431 31-6556

Figure 2.6 O-Ring Pressure Test Chambers

2.3 Experimental-Assembly Accessory Equipment

Operation of the experimental-assembly hydraulic cylinder (slave cylinder) is accomplished with a master cylinder connected to the crosshead of an Instron machine (Fig. 2.7). The master cylinder is connected to the slave cylinders by \(\frac{1}{4} - \text{in.} \) soft-copper hydraulic lines. Twenty lines (supply and return to ten cylinders) are routed from each experimental assembly through a selector panel (Fig. 2.8). Forces exerted by the Instron machine are thus transmitted indirectly to the specimens in the experimental assembly. Length of the connecting hydraulic lines is 100 feet. Oronite 8515 hydraulic fluid is used.

The LN₂ supply lines are $\frac{1}{2}$ -in. soft-copper tubing insulated with a 1-in. thickness of Armstrong Armaflex insulation. These lines connect to a 3-outlet manifold on the LN₂ supply tanks. The LH₂ supply line is a $\frac{1}{4}$ -in. ID x 1-in. OD flexible, bellows-type, stainless-steel line made by The Linde Company. It is vacuum-insulated and requires no outside covering. A 1-inlet, 3-outlet, vacuum-insulated manifold is used in the LH₂ supply-piping system to feed three experimental assemblies simultaneously from one LH₂ supply tank. The manifold contains a solenoid-controlled, air-operated, vacuum-insulated cutoff valve in each outlet line. Evaporated-cryogen lines are $1\frac{1}{2}$ -in. flexible metal hose. Provision is made to vent evaporated LH₂ to the atmosphere from a 20-ft-high stack located in a remote end of the reactor area.

Figure 2.7 Model TT Instron Machine with Hydraulic Servo-System Master-Cylinder Installed

Figure 2.8 Hydraulic Servo-System Slave-Cylinder Selector Panel

Figure 2.9 is a photograph showing two experimental assemblies in irradiation position at the east and north positions. The vacuum-irradiation system is located at the west position. Reference to the photograph shows the bundle of 20 soft-copper hydraulic lines, electrical harness, insulated LN₂ supply line, and flexible-metal evaporated-cryogen outlet line coming from each experimental assembly. Frost around the top flange and on the evaporated cryogen-outlet line of the north assembly indicates that this assembly is partially filled with LN₂. The west escalator pallet is shown in the half-down position.

2.4 Ambient-Temperature Irradiation Equipment

For the ambient-temperature irradiation, an aluminum box frame with slots for expanded-metal trays was used (Fig. 2.10). This frame work also latches to the escalator pallet for positioning next to the reactor face. Different specimens scheduled to receive the same radiation dose were wired to the expanded-metal trays in a circular arrangement. This was necessary because of the circular pattern of isodose lines that exist in vertical planes out from the reactor face during operation. The trays were placed at various distances from the reactor face to achieve varying doses on different specimens during an irradiation. Specimens irradiated at ambient temperature were subsequently tested at room temperature in the Irradiated Materials Laboratory (IML).

Figure 2.9 Irradiation Area with Experimental Assemblies Installed

Figure 2.10 Rack Framework for Ambient Irradiation Showing Typical Material and Dosimetry Packet Arrangement

2.5 Test Instrumentation

Instrumentation necessary to operate the experimental assemblies and record the required data included the following: (1) standard Instron instrumentation to record stress-strain data; (2) ten-point Honeywell recorders to chart temperatures of specimens during the ambient irradiation, together with temperatures of specimens and cryogen during the LH2 and LN2 irradiations; (3) a GD/FWdesigned instrument to provide continuous indication of cryogen liquid level during operation with LN2 and LH2; and (4) a Model 150 Sanborn oscillograph recording system with a Model 150-100 carrier preamplifier which was used to record (a) stress-strain data as received from the dynamometers and LVDT's and (b) cryogen-chamber pressure signals received from a pressure transducer installed in the top flange of each experimental assembly. The Instron machine is a Model TT. The LVDT's are Schaevitz No. 600ES-L; the dynamometers, Schaevitz No. TDC-4A-1000; and the pressure transducers, Consolidated Electrodynamics No. 4-312. Figure 2.11 is a photograph of the Sanborn equipment and the GD/FW-designed liquid-level indicator control panel.

The liquid-level indicator utilizes a basic balanced-bridge circuit as the principle of operation (Fig. 2.12). The sensing elements are 1000-ohm resistors positioned on approximately 3-in. vertical intervals in the cryogen chamber (Fig. 2.6). The resistance of these sensing resistors when submerged in cryogen changes to approximately 5000 ohms which, during operation, unbalances the

Figure 2.11 Instrumentation for Experimental Assembly

Figure 2.12 Schematic Diagram of Liquid-Level Indicator

bridge circuit and causes current to flow through the meter relay. This current deflects the meter needle until it comes in contact with another preset needle, thus closing contacts which activate the warning-horn circuit.

A meter-polarity-reversal switch and a bridge-adjustment potentiometer are provided on the control panel. Operation of these units provides a warning-horn signal either with a sensing resistor "in-liquid" or "out-of-liquid," thus providing a means of determining whether the liquid level is rising or falling in the chamber and the approximate rate of change.

During an irradiation run, the pressure-transducer recording chart and cryogen-chamber temperature recorders are operated continuously and are visually monitored to guard against any unusual rise in these readings. The allowable limit on pressure for the cryogen chamber is 5 psi. Any rise above this point necessitates closing the cryogen supply valve and checking the evaporated-cryogen outlet pipe for stoppages.

The liquid-level instrumentation is also operated and monitored continuously whenever cryogen is flowing into any assembly. The liquid level is maintained by opening and closing valves in the $\rm LN_2$ and $\rm LH_2$ manifolds.

Before data are taken with the LVDT's, dynamometers, and Instron machine, each of these units must be calibrated. This is accomplished by plotting output signals against known loads and deflections.

When actual measurements of a specimen being pulled in tension or compression are taken, the Instron, LVDT, and dynamometer recorders all work in conjunction. As the specimen is pulled, all three recorders are pipped periodically and simultaneously to establish common points on the three curves. The Instron recorder plots the stress seen by the crosshead as a function of the actual crosshead (or master-cylinder) movement. Voltage changes resulting from movement of the LVDT core are plotted and readily translated into inches of pull-rod movement. Similar data are received from the dynamometers and read from the chart as pounds-of-force exerted by the pull rod.

III. RADIATION ENVIRONMENT

3.1 GTR Neutron Spectrum Determination

3.1.1 Analytical GTR Neutron Spectrum

The spectrum (Ref. 2) of the GTR in a water moderator has been measured to be Maxwellian at thermal energies (E < 0.48 ev), approximately E^{-1} from about 0.5 ev to 0.1 MeV, and essentially a fission spectrum for higher energies. In Figure 3.1, this spectral shape has been mathematically altered to account for the attenuation of the neutron flux by the boral surrounding the reactor in the drypool configuration. The resulting analytical spectrum has been shown to represent the actual spectrum fairly accurately.

Flux measurements have been made in the thermal, epithermal, and fast energy ranges by use of a variety of thermal, resonance, and threshold detectors. Measurements made in the dry side with the boral in place, in the energy range above 2.9 MeV, agree well with those in the wet-pool side. The measured thermal flux is in general agreement with that obtained by integration of the analytical curve shown in Figure 3.1. Measurement of the epithermal flux by use of resonance detectors is very difficult and values differing by as much as a factor of 2 are obtained by the various detectors.

An experiment (Ref. 3) performed for Sandia Corporation mapped the irradiation volumes with plutonium, neptunium, uranium foils, and sulfur pellets of the type used by GD/FW. The foil-counting

Figure 3.1 Analytical GTR Neutron Spectrum

and data reduction were done by Sandia. The results as reported by Sandia show that Sandia and GD/FW agree within a few percent on sulfur measurements (E > 2.9 MeV) and that fission-foil data agree favorably with the analytical spectrum at all locations.

The neutron spectrum above 0.5 Mev has also been determined at one location by means of Ilford neutron plates (type E-1). Integrals of this spectrum agree closely with integrals of the analytical spectrum.

In June 1960, a comprehensive foil-calibration experiment encompassing both GD/FW and Aerojet-General Nucleonics (AGN) foils was conducted (Ref. 4). The results of the two independent counting and data-reduction programs agree within a few percent.

3.1.2 Experimental GTR Neutron Spectrum

Figure 3.2 shows a representative neutron-energy spectrum in the east cryogen chamber at a point midway (front to back) between the center sample positions. This spectrum is normalized to an experimental fast flux $\emptyset(E > 2.9 \text{ MeV}) = 2.9 \times 10^4 \text{ n/cm}^2\text{-sec-watt}$ and shows that, in the energy interval given, the spectrum shape is affected only slightly, if at all, by attenuation through LN₂ or LH₂ (compare with Figure 3.1).

3.2 Nuclear-Measurement Procedures

Determination of the neutron flux and gamma dose inside the experimental assemblies was done according to NARF standard procedures used on all irradiation tests. Radioactivants used for

Figure 3.2 Representative Neutron Spectrum in the East Cryogen Chambers Midway Between Front and Back Sample Locations on Vertical Centerline

neutron-flux measurements were standard types and are outlined in the succeeding sections. Gamma-dose levels were monitored with nitrous-oxide and polyethylene plastic dosimeters.

3.2.1 Ambient-Temperature Irradiation

Three racks mounted with the material specimens prescribed for the tests were irradiated in air at ambient temperature ($\sim 125^{\circ}F$) on the north pallet position of the GTR at a power level of 1.5 Mw. The rack-mounted materials were to receive integrated gamma doses [ergs/gm(C)] as follows: Rack 1, 5 x 10^{10} ; Rack 2, 1 x 10^{10} ; and Rack 3, 5 x 10^{9} .

Nuclear measurements were made at strategic locations on each rack with bare and cadmium-covered copper foils for the thermal flux, sulfur pellets for fast-neutron flux (E > 2.9 MeV), and nitrous-oxide gamma dosimeters. Figures 3.3, 3.4, and 3.5 show locations of material specimens and nuclear measurement packets on Racks 1, 2, and 3, respectively.

3.2.2 <u>Liquid-Nitrogen Irradiation</u>

Packets containing one each of the neutron radioactivants sulfur, magnesium, aluminum, and bare and cadmium-covered copper were mounted on 0.040-in.-thick expanded-aluminum sheets in an array as shown in Figure 3.6. Locations of nitrous-oxide gamma dosimeters are also shown. Sheets with detectors arranged in this manner were attached to the lower box-frame directly in front of, and directly behind, the test samples in the cryogen chambers of

Figure 3.3 Layout of Materials and Dosimetry Packets on Rack 1 for Ambient Irradiation

Figure 3.4 Layout of Materials and Dosimetry Packets on Rack 2 for Ambient Irradiation

Figure 3.5 Layout of Materials and Dosimetry Packets on Rack 3 for Ambient Irradiation

the north and east assemblies. Measurements were made with the detectors submerged in liquid nitrogen.

In addition, a total of six nitrous-oxide gamma dosimeters were located on the outside, front and back, of each of the north and east cryogen chambers during irradiation. They were positioned so as to be on a horizontal plane through the test materials, and were spaced evenly with respect to the pull-rod centerline. (The spacing of these dosimeters across the front and back faces, relative to the pull-rod positions in the cryogen chambers, is indicated by the points on the solid curve shown in Figure 3.10).

3.2.3 Liquid-Hydrogen Irradiation

Packets containing the neutron radioactivants sulfur, magnesium, aluminum, and bare and cadmium-covered phosphorous were mounted on 0.040-inch-thick expanded-aluminum sheets in an array as shown in Figure 3.7. These neutron-detector packets were located in front of and behind the test samples and were irradiated while submerged in liquid hydrogen.

Since there are no calibration data for gamma dosimeters irradiated at liquid-hydrogen temperatures, no gamma-measurement devices were placed inside the experimental assemblies during the LH₂ test. At the present time, investigation is being made of the effects of cryotemperatures upon nitrous-oxide gamma dosimeters, with hopes that they may be used with confidence in future experiments.

NPC 17,455

Figure 3.6 Layout of Dosimetry Packets for LN₂ Irradiation

Nitrous oxide gamma dosimeter

O O O O O 10"
1 2 3 4 5

Neutron detectors (P, S, Mg, Al)

Figure 3.7 Layout of Dosimetry Packets for LH 2 Irradiation

A total of eight nitrous-oxide gamma dosimeters were located on the outside, front and back, of each of the north and east cryogen chambers during irradiation. They were positioned so as to be on a horizontal plane through the material specimens. The spacing of these dosimeters across the front and back chamber faces, relative to the pull-rod positions in the cryogen chambers, is indicated by the points on the solid curves shown in Figure 3.13.

3.3 Nuclear Measurement Results

3.3.1 Ambient-Temperature Irradiation Tests

The radiation exposure levels measured during the ambienttemperature irradiations are given in Table 3.1. These radiation measurements show good agreement with previously measured radiation levels made in airat these locations (Ref. 5).

3.3.2 <u>Liquid-Nitrogen Irradiation Tests</u>

There were two factors which contributed to the loss of portions of the required LN_2 data. First, an unexpectedly high radioactivity in the experimental assemblies hampered the manual removal of the neutron foils. This resulted in a loss of some of the foils and an excessively long retrieval time for others. Second, gamma heating during the test resulted in the melting of sections of a lead shield. The molten lead then came in contact with some of the dosimetry and destroyed it.

Average values of the neutron flux midway between the front and back sample rows were obtained by interpolation between flux measurements made with neutron detectors located directly in front

Table 3.1
Radiation Exposure Levels for Ambient Irradiation

	Integrated Neutron Flux		
Dosimetry Packet Number*	Thermal (n/cm ²)	E >2.9 Mev (n/cm ²)	Gamma Dose [ergs/gm(C)]
Rack 1			
AI1 AI2 AI3 AI4 AI5	2.2 x 10 ¹⁴ 2.4 x 10 ¹⁴ 4.7 x 10 ¹⁴ 2.3 x 10 ¹⁴ 6.3 x 10 ¹⁴	1.7 x 10 ¹⁶ 1.6 x 10 ¹⁶ 1.7 x 10 ¹⁶ 1.6 x 10 ¹⁶ 1.9 x 10 ¹⁶	6.0 x 1010 6.0 x 1010 6.7 x 1010 4.9 x 1010 8.8 x 1010
Rack 2			
AII1 AII2 AII3 AII4 AII5	3.7 x 10 ¹⁴ 3.6 x 10 ¹⁴ 3.5 x 10 ¹⁴ 3.2 x 10 ¹⁴ 3.5 x 10 ¹⁴	2.5 x 10 ¹⁵ 2.5 x 10 ¹⁵ 2.6 x 10 ¹⁵ 2.2 x 10 ¹⁵ 2.9 x 10 ¹⁵	1.1 x 10 ¹⁰ 1.0 x 10 ¹⁰ 1.2 x 10 ¹⁰ 7.6 x 10 ⁹ 1.1 x 10 ¹⁰
Rack 3	_		
AIII1 AIII2 AIII3 AIII4 AIII5	1.1 x 10 ¹⁴ 1.0 x 10 ¹⁴ 9.6 x 10 ¹³ 1.7 x 10 ¹⁴ 2.2 x 10 ¹⁴	1.1 x 10 ¹⁵ 1.3 x 10 ¹⁵ 1.3 x 10 ¹⁵ 1.2 x 10 ¹⁵ 1.3 x 10 ¹⁵	5.5 x 109 4.8 x 109 4.9 x 109 4.6 x 109 4.6 x 109

^{*}See Figures 3.3, 3.4 and 3.5 for locations of packets

of and behind the sample positions during the irradiation. Figures 3.8 and 3.9 show these values for the east and north chambers, respectively, plotted as the solid lines. The broken lines in the figures show analytical neutron-flux values, the values most likely to be expected in the chambers (see below).

The flux values shown in the figures for both chambers for E > 2.9 MeV are in very good agreement with the air-flux values (Ref. 5. However, for the reasons given above, the flux values in the east chamber (Fig. 3.8) for E > 8.1 MeV and E < 0.48 eV are known to be low, and the E > 7.5 MeV flux values are erratic and are not plotted. In the north chamber (Fig. 3.9) the thermal-flux values (E < 0.48 eV) are not shown because they too are erratic. In order to determine these missing values, a comparative analysis was made with other reliable measurements, as follows:

The ratio of the neutron flux above 2.9 MeV to that above 8.1 MeV measured during the LH_2 experiments (Sec. 3.3.3) was found to be 25. This value is in good agreement with the accepted value of 26 for the GTR spectrum measured through the boral shroud in previous tests (Fig. 3.1). Multiplying the 2.9-MeV neutron flux, plotted in Figures 3.8 and 3.9 by 1/25 yields the neutron flux for E > 8.1 MeV shown as a dashed line.

The neutron flux for E > 7.5 Mev was obtained in much the same manner. For the GTR spectrum measured through the boral shroud, where 5/E > 2.9 MeV/5/E > 8.1 MeV = 26, then 5/E > 2.9 MeV/5/E > 8.1 MeV = 26, then 5/E > 2.9 MeV/5/E > 7.5 MeV = 18. Thus, in the cryogenic experimental assemblies,

Figure 3.8 Neutron Flux Midway Between Front and Back Sample Positions: LN 2 Irradiation; East Chamber

Figure 3.9 Neutron Flux Midway Between Front and Back Sample Positions: LN2 Irradiation; North Chamber

where $\emptyset(E > 2.9 \text{ MeV})/\emptyset(E > 8.1 \text{ MeV}) = 25$, it may be assumed that the ratio $\emptyset(E > 2.9 \text{ MeV})/\emptyset(E > 7.5 \text{ MeV}) = 17$. Therefore, values for the neutron flux for E > 7.5 MeV are determined from the measured sulfur flux (E > 2.9 MeV) by multiplying this flux by 1/17. These values are also shown as dashed lines in Figures 3.8 and 3.9.

The gamma dose-rate values are shown in Figure 3.10 for both the north and east chamber locations. The solid line in Figure 3.10 is the average gamma dose rate along a line midway between the front and back rows of pull rods inside the east experimental assembly. These values were obtained from measurements made with N_2O gamma dosimeters located directly in front of and behind the specimen positions but on the outside of the chamber. The N_2O dosimeters mounted on the outside of the north chamber were accidentally destroyed during manual removal after irradiation.

The dashed lines in Figure 3.10 show the gamma dose rate along a line midway between front and back rows of pull rods inside the east and north assemblies obtained from previous measurements made in air (Ref. 5). These curves are, for reasons given below, considered to be a more reliable representation of the gamma flux in this run.

A considerable difference exists between the two gamma doserate curves for the $\rm LN_2$ and $\rm LH_2$ runs for the east cryogen chamber (compare Figs. 3.10 and 3.13). This variation can be attributed, in part, to the use of a lead shield on the reactor side of the assembly during the $\rm LN_2$ run. An area on the front face of the cryo-

Gamma Dose Rate Midway Between Front and Back Sample Positions: LN₂ Irradiation; East Chamber

Figure 3.10

Gamma Dose Rate [ergs/gm(C)-hr-Mw x 10-8]

gen chamber sufficient to expose all specimens to a direct beam of radiation from the reactor was provided by a rectangular port in the shield. The dosimetry was then mounted on the exposed surface of the cryogen chamber within the confines of this port, which meant that the gamma dosimeters were in close proximity to the two-inch-thick, steel-enclosed lead. Heat buildup in this shield - estimates of the temperature are 600°F to 800°F - is thought to have caused the response rate of the nearby nitrous-oxide dosimeters to increase, resulting in erroneously high dose readings for the LN₂ run.

Nitrous-oxide dosimeters irradiated while submerged in liquid nitrogen in the north and east chambers were analyzed, but, because the results appeared somewhat erratic, they were considered not to be representative of actual gamma-dose levels. These values are given in Table 3.2 for information only.

Most of the polyethylene plastic dosimeters irradiated during this test were overexposed. The useful range of this type of dosimeter is from 1 x 10^8 to 1.5 x 10^9 ergs/gm(C). The results of post-irradiation processing of the polyethylene dosimeters indicated, however, that the integrated gamma doses at the north-front, north-back, and east-front positions were equal to or greater than 1.5 x 10^9 ergs/gm(C). Those dosimeters located at the east-back position showed an integrated dose of approximately 1.4 x 10^9 ergs/gm(C).

Table 3.2

Results from Nitrous-Oxide Gamma Dosimeters Irradiated in Liquid Nitrogen				
Positions	ergs/gm(C)	ergs/gm(C)-hr-Mw		
	North	North Chamber		
Front 2	1.75 x 10 ¹¹	1.46 x 10 ⁹		
Front 6	1.7 x 10 ¹¹	1.42 x 10 ⁹		
Back 2	6.5 x 10 ¹⁰	5.4 x 10 ⁸		
Back 6	(broken)			
	East Chamber			
Front 2	(not exposed)			
Front 6	(not exposed)			
Back 2	7.4×10^9	1.9 x 10 ⁸		
Back 6	8.3 x 10 ⁹	2.1 x 10 ⁸		

3.3.3 Liquid-Hydrogen Irradiation Tests

Figures 3.11 and 3.12 show an average and analytical neutron flux determined in the same manner as that shown in Figures 3.8 and 3.9. Table 3.3 shows average values of the neutron flux above the given thresholds as a function of the neutron flux for E > 2.9 MeV. The data indicate that reliable measurements were obtained from the sulfur (E > 2.9 MeV) and aluminum (E > 8.1 MeV) threshold detectors.

Figure 3.11 Neutron Flux Midway Between Front and Back Sample Positions: LH₂ Irradiation; East Chamber

Distance Inside Lower Box Frames (inches)

Figure 3.12 Neutron Flux Midway Between Front and Back Sample Positions: LH₂ Irradiation; North Chamber

Table 3.3

		ron-Flux Ratios in North Cryogen Chambe	rs					
Chamber	Chamber \$\alpha > 2.9 \text{Mev} \alpha_{o(Th)} \$\alpha > 2.9 \text{Mev} \alpha > 7.5 \text{Mev} \$\alpha 2.9 > \text{Mev} \alpha > 8.1 \text{Mev}\$							
East	0.45	24	25					
North	0.35	31	25					

Thermal-flux values in LH₂ are higher than those measured in air (Ref. 5), which is about as expected. Data on the thermal-neutron flux presented here are based on an ambient-temperature determination and do not reflect a conversion factor for the cryotemperature in the chamber. Use of a temperature correction factor to determine the true thermal flux involves two rather broad assumptions: (1) the neutrons are in thermal equilibrium with the surroundings, and (2) the energy distribution of the neutrons is indeed Maxwellian. Since neither of these assumptions may be substantiated, all thermal-flux values throughout this section are based on an ambient-temperature determination.

The average gamma dose rates along a line midway between the front and back pull rods in the east and north chambers are given in Figure 3.13. These values are shown as the solid lines. They were obtained from nitrous-oxide dosimeters placed directly in front of and behind specimen locations, but on the outside of the

Gamma Dose Rate Midway Between Front and Back Sample Positions: LH2 Irradiation; North and East Chambers

Figure 3.13

Gamma Dose Rate [ergs/gm(C)-hr-Mw x 10-6]

cryogen chambers. The broken lines are the gamma dose rates along the line just described and are obtained from previous measurements made in air (Ref. 5).

IV. TESTING PROCEDURES

The materials tested and the test plan for each are given in Table 4.1. In all tests, the ASTM procedure that was most applicable was followed as closely as possible. However, some modifications were required because of the environment involved and the use of remote control to operate the equipment. Shapes and dimensions of the test specimens were held very close to ASTM dictates, although some deviation was necessary where doublers, rod holes, and slots were needed, as in the dumbbell-type specimens of materials D, I, and J.

All tests were performed according to the test plan, with a few minor exceptions (which will be discussed individually) and one major exception. The major exception was concerned with the LH₂ high-dose tests for materials A, B, I, and J. A small fire of undetermined origin occurred in the area of the electrical and tubing harness of one experimental assembly after 20 hours operation in the LH₂ irradiation, resulting in termination of the test at this point. The harness was destroyed over a small section, which prevented the taking of any data on materials requiring the highest scheduled dose in the LH₂ run. This is reflected in the data and demonstrated in photographs of the tested specimens.

Temperatures of specimens during the ambient irradiation ranged from 110°F for those in the tray farthest from the reactor to 143°F for those nearest the face of the reactor.

Table 4.1

,	Value a Dose m(C)	H1gh Dose	5(10)	5(10)	1(10)	1(10)	1(10)	1(10)
	Planned Value of Gamma Dose [ergs/gm(C)]	Low Dose	1(10)* 5(10)	1(10)	5(9)	5(9)	5(9)	5(9)
	No. of Specimens Tested	Per Data Point	4	7	η	7	1	1
	المريدة أي ال	Specimen	Lap-shear	Lap-shear	Thin film (10 mil)	Dumbbell & O-ring	1.129 in. diam. x 0.50 in. thick Compr. button	1.219 in. diam. x 0.50 in. thick Compr. button
sts		Method	ASTM-D- 1002-53T (mod1f1ed)	ASTM-D- 1002-53T (mod1f1ed)	ASTM-D- 882-61T (modified)	ASTM-D- 638-61T (modif1ed)	ASTM-D- 1565-59T (modified)	ASTM-D- 1565-59T (modified)
Plan for Radiation-Cryotemperature Tests		Tests Performed	Tensile-shear strength	Tensile-shear strength	Ult. tensile strength Ult. elongation Stress-Strain	Minnesota Mining Ult. tensile strength Ult. elongation Stress-Strain	Compression- Deflection	Compression- Deflection
		Manufacturer	Hexcel Products Inc.	Normco Materials Div.	E.I. du Pont de Nemours & Co.	Minnesota Mining & Mfg. Co.	American Latex Products Co.	Dow Chemical Co.
Materials Test		Trade Name	Hexcel 1252	Metlbond 406	Teflon TFE	Kel-F-81	Stafoam AA402	Styrofoam Dow 22
Ma		Chemical Class	Polyurethane	Epoxy-poly- amid	Tetra-fluoro- ethylene	Fluorocarbon	Polyurethane	Polystyrene
;		Material Designation	A	ф	O	Д	ជ	[t ₁
		Material Application	Adhes1ve		Seal	80	Thermal Insulation	

*Read 1(10) as 1 x 10^{10}

Table 4.1 (cont'd)

lue Ose	e p.	6	(0	6	6	6	6
ed Va	H1gh Dose	1(10)	1(10)	5(1	5(1	1(10)	1(10)
Planned Value of Gamma Dose ergs/gm(C)	Low Dose	2(9)	(6)9	1(10) 5(10)	1(10) 5(10)	5(9)	2(9)
No. of Specimens	Per Data Point	ħ	77	ħ	†	က	en ,
, , , , , , , , , , , , , , , , , , ,	Specimen	Thin film (2.5 mil)	Thin film (1 mil)	Dumbbe11	Dumbbell	Wafer	Wafer
£-	Method	ASTM-D- 822-61T (modified)	ASTM-D- 822-61T (modified)	ASTM-D- 638-61T (modified)	ASTM-D- 638-61T (mod1f1ed)	Test per- formed by GD/Astro	Test per- formed by GD/Astro
	Tests Performed	Ult. tensile strength Ult. elongation Stress-Strain					
	Manufacturer	DuPont	DuPont	<pre>GD/FW (Normco Materials Div.)</pre>	NASA (Rohm & Haas)	Andrew Brown Co. α/ε ratio	Sherwin Williams a/e ratio
ם לי מנ <u>ו</u>	Name	H-Film	Mylar-C	Conolon 506	Paraplex P-43	Skyspar A423	W-49-BC- 12
Chemical	Class	Polyimid	Polyester	Phenolic	Polyester	Броху	Acrylic
היקים מידים	Designation	Ð	н	H	ورا	ĸ	ī
Material	Application	Electrical Insulation		Structural Laminate		Thermal- Control Coating	

4.1 Material A: Hexcel 1252

The samples for testing this adhesive were prepared by the laboratories at the George C. Marshall Space Flight Center, Huntsville, Alabama. The adhesive was applied in a \frac{1}{2}-in.-wide strip across the ends of 6-in.-wide, 1/16-in.-thick aluminum sheets. 2024 aluminum sheets were cleaned chemically by standard procedures before application of the adhesive. One hundred grams of the adhesive (1252) was thoroughly mixed with 5 mg of a catalyst (1252C) and this mixture applied to the bond area of each aluminum sheet. After air-drying for 30 minutes, a thin coat of the adhesive was applied to one of the sheets making up the sample and the two sheets placed together so that the $\frac{1}{2}$ -in. bond areas overlapped. of the glue area was at first considered necessary because the pulling forces obtainable on the pull rods through the hydraulic servosystem reached a maximum of about 3000 lb (instead of the desired capability of 10,000 lb) at Instron crosshead speeds below 0.10 in./min. Apparently, small leaks past piston seals and through fitting joints developed at hydraulic pressures of around 300 psi (or 3000 lb total force). The transmission rate of fluid from the Instron master cylinder to the slave cylinder at these slow speeds was then less than the leak rate, which resulted in a gradual slowing-down and an ultimate stop in pull-rod movement at these pressures.

The problem of testing materials under these conditions existed with Materials B, I, and J, as well as A. It was partially solved by

reducing the glue area on Material A and, later on, during the tests, by raising the crosshead speed to the point of surpassing the leak rate for tests on the other materials. This increase in crosshead speed provided higher pull-rod forces, but pull-rod rates remained on the low side and, in some cases, amounted to only one-tenth of that called for in the test plan.

Some Material A specimens failed in the doublers, but most were tested satisfactorily. The data for Material A are tabulated in Table A-1, and a photograph of representative specimens which were tested under all nine conditions is shown in Figure 4.1. The conditions were as follows: no-irradiation (No IRR.); irradiated, low dose (IRR., L.D.), and irradiated, high dose (IRR., H.D.) at each of three temperatures. A standard untested specimen is shown at the top of the figure.

4.2 Material B: Metlbond 406

This material was also furnished by the George C. Marshall Space Flight Center. Aluminum sheets (2023-T3), 4 by 6 by 1/8 in., were degreased by wiping with toluene and soaking in warm water containing Alconox detergent. After thorough rinsing and air-drying, the bond areas were cleaned by a solution containing 330 gm of sodium dichromate 2H 2O, 2740 ml of distilled water, and 525 ml of 95% sulphuric acid. This solution was kept at from 150° to 160°F for 20 minutes before using. The test pieces were rinsed and air-dried. The bond area of all pieces was coated with liquid Metlbond 408, applied with a brush. This coat was air-dried a minimum of two hours.

Figure 4.1 Material A Specimens

A strip of the Metlbond 408 was applied to one side of the test sample and placed in a hot-air oven at 105°C for one hour. This piece was used with a primed-air-dried half and was overlapped \frac{1}{2} inch. The excess adhesive film was removed and the sample was placed in a modified Carver press at about 5 psi for 5 minutes at 300°F. The pressure was released for about 30 seconds and the sample cured for one hour. The sample was removed and a 3/8-in. strip cut from its side and discarded. The remainder of the sample was cut to 1-in.-wide strips for test specimens. The excess adhesive was removed from all bond edges and the bond area was measured to ±0.005 inch. The cure was for one hour at 350°F at 25 psi.

The glue area of these specimens was 1 by $\frac{1}{2}$ in. Most of the test specimens pulled satisfactorily, with very few showing breaks in the doublers. The doublers, in the case of both A and B materials, were made from 1/16-in.-thick aluminum sheet and were glued and riveted to both sides and both ends of each specimen.

Data for Material B are tabulated in Table A-2. Figure 4.2 is a photograph of representative specimens which were tested under the nine conditions.

4.3 Material C: Teflon TFE

This material was tested for stress-strain, tensile strength, and ultimate elongation at the ambient-temperature, no-irradiation condition only. It was irradiated to the low and high doses at ambient temperature in air, but the specimens crumbled while being removed from the mounting trays. The specimens were in thin-film

Figure 4.2 Material B Specimens

form (10-mil thickness), but all attempts to glue them to the thin-film-tester spools used for low-temperature tests in the experimental assemblies failed.

The data for this material are tabulated in Table A-3. Figure 4.3 is a photograph of the specimens.

4.4 Material D: Kel-F-81

This material was tested in the form of a dumbbell tensile specimen and as an O-ring. Doublers for the tensile specimens were made from aluminum sheet and were glued and riveted on. About 20% of these specimens, upon inspection, were found to be broken in the doubler area. Analysis of the data, however, indicated that most of these probably broke in the narrowed section of the specimen first.

The normal procedure for testing dumbbell-type specimens in tension is, of course, to attach an extensometer to a 2-in. gage length in the center of the narrowed section of the specimen and to measure the resulting strain over this gage length as the specimen is pulled. However, no provision was made for any kind of remotely operated extensometer to be used with specimens submerged in cryogen in the experimental assemblies. Instead, only the extension between clevis rods was measured. This approximates the crosshead extension, or extension between clamping jaws, of a specimen tested in a standard tensile machine.

The ambient-temperature dumbbell-type specimens, however, were tested with the use of an extensometer, and both crosshead extension and gage-length extension were recorded. The procedure of

NPC 17,440 31-6801

Figure 4.3 Material C Specimens

taking both extensometer and crosshead data on one group of specimens applied to all materials with dumbbell-type specimens, namely, Materials D, I, and J.

No tests were performed on Material D specimens that were irradiated to the high dose at ambient temperature. The environment had embrittled them to the point that they fractured as they were being removed from the mounting trays.

Material D was also machined into 0-rings to test the sealing characteristics of the material under the combination environment of nuclear radiation and cryotemperature. Pressure chambers (Fig. 2.6) were fabricated to contain these 0-rings as seals between the flanges. Both the 0-ring and the 0-ring groove in the flange were of standard dimensions. These chambers were pressurized with helium gas during the irradiations, and periodic checks of the leak rates were made. Postirradiation checks of the pressure-holding characteristics, as well as visual inspection of the rings, were made. In addition, tests were run to determine ultimate tensile strength, and the resulting values were checked against similar values for unirradiated 0-rings.

As mentioned above, both extensometer deflection and crosshead deflection (or deflection between clamping jaws) were measured as a function of load for one group of specimens at ambient temperature. From these data, taken on three specimens for Material D, the average loads for unit crosshead (or pull-rod) deflection and unit extensometer deflection were determined (see Table A-5). With these

average data, a constant equal to the ratio of extensometer deflection to pull-rod deflection was calculated. Each value of unit pull-rod deflection, corresponding to average loads of specimens pulled in the experimental assemblies under cryotemperature conditions, was then multiplied by this constant to obtain hypothetical extensometer strain values for these low-temperature specimens. These calculated values are included with the data taken for this material, as shown in Tables A-4 through A-11.

Figure 4.4 is a photograph of representative tensile specimens pulled during the experiment.

4.5 Material E: Stafoam AA-402

Tare loads resulting from drag on both the master-cylinder piston and the slave-cylinder piston existed with all tests that utilized this hydraulic servo system. These loads were a function of Instron crosshead speed, being larger for higher speeds, and varied from about 150 to 450 lb for crosshead speeds between 0.05 in./min and 0.50 in./min. These loads were discernible on the Instron chart during movement of both pistons just prior to contact with the specimens. In instances involving pull rods with dynamometers installed, the tare load of the slave piston itself was indicated on the dynamometer chart, with the total tare on the entire system being recorded on the Instron chart. In tabulating load data for all specimens, tare loads were of course subtracted to obtain the true loads on the specimens.

Figure 4.4 Material D Specimens

Materials E, F, G, and H all required net loads of from about 20 to 150 lb to complete the required test. A careful analysis of the charts was thus necessary to accurately subtract out the relatively high percentage of the total load which amounted to tare.

During the portions of these tests in which dynamometer data as well as Instron data were available, the pure tare load, which was recorded just prior to contact with a specimen, was lower on the dynamometer chart than on the Instron chart. This is to be expected, since the dynamometer was seeing tare load on the slave piston only. But when the specimen was picked up, the differential loads on the dynamometer chart were consistently higher than the differential (or specimen) loads recorded on the Instron chart. This was somewhat paradoxical, but it was finally concluded that when a specimen was picked up, the extra load on the pull rod served to slow down the pull-rod speed, thus lowering the total tare load by an amount equal to the difference between the specimen loads indicated on the two charts. Representative examples of Instron and dynamometer traces which illustrate this phenomenon are shown in Figure 4.5.

From this, it was decided that, for specimens requiring relatively lower loads during testing, dynamometer readings were more reliable and would be used in the data tabulation. In addition, it was decided that for low-load type specimens (Materials E, F, G, and H) tested on pull rods with no dynamometers installed, the specimen loads as indicated on the Instron chart should all be

Figure 4.5 Representative Examples of Instron and Dynamometer Traces

multiplied by a factor which was determined as the average specimen load measured directly by a dynamometer divided by the corresponding specimen load taken from the Instron chart. This factor was 1.5.

Material E specimens were tested in compression, and stress-strain data were taken for deflections up to approximately 0.25 inch (50% of original specimen thickness). The above factor (1.5) was applied to specimens tested in the experimental assemblies on pull rods with no dynamometer installed.

As discussed under Section V , data were obtained from one specimen only for several data points. The material was tested under all nine conditions, however. The data are tabulated in Tables A-12 through A-17. Figure 4.6 is a photograph of representative speciments which have been tested under the various conditions.

4.6 Material F: Styrofoam 22

Specimen shape and size, tests, and test characteristics for this material were identical to those for Material E. The policies used for Material E in tabulating loads from dynamometer and Instron data were also followed for this material. The data are tabulated in Tables A-18 through A-23. A photograph of representative tested specimens is presented in Figure 4.7.

4.7 Material G: DuPont H-Film

This material was tested as a thin film and was pulled in tension to obtain stress-strain characteristics, ultimate tensile strength, and ultimate elongation. A 4-in. gage length was used. Total length of the original specimens was 12 inches, with each end

Figure 4.7 Material F Specimens

being glued and rolled up on a spool to the 4-in. gage-length spacing. Ambient-temperature tests were performed in the Instron machine. Cryotemperature tests were performed by use of the thin-film testers shown in Figure 2.5. Specimens were 1 inch wide and 2.5 mils thick.

Considerations involving load measurements (discussed in the above sections) are also applicable to tests on the H-film.

The data taken in the experiment for this material are shown in Tables A-24 through A-32. Figure 4.8 is a photograph of representative specimens, both tested and untested. No detectable difference existed between specimens tested under the various conditions.

4.8 Material H: DuPont Mylar-C

Specimens, tests, and test characteristics for this material were identical to those for Material G, except that thickness of the film tested was 1 mil. The data taken during tests are shown in Tables A-33 through A-40. Since the appearance of the material before and after testing was identical to that of Material G, no photographs were made. Photography would have been difficult anyway, since the material was perfectly clear both before and after irradiation. The H-film was amber colored, and its appearance did not change during irradiation.

4.9 Material I: Conolon 506

This material was milled into dumbbell-type specimens and tested in tension for stress-strain characteristics, ultimate tensile

Figure 4.8 Material G Specimens

strength, and ultimate elongation. The specimens contained doublers made from the same material and glued into place.

As in the case of Material D, one group of ambient-temperature specimens was tested with the use of an extensometer. Strain values from both the extensometer extension and the crosshead movement were recorded, and unit deflections for average loads from two or three specimens were determined. With these data, a constant equal to the ratio of unit extensometer deflection to unit crosshead deflection was calculated and used to obtain the hypothetical extensions over a 2-in. gage length for specimens tested in the experimental assemblies at cryotemperatures.

Authenticity of these calculated (or hypothetical) extensions for specimens which have been irradiated and reduced in temperature to levels approaching absolute zero is dependent upon the reliability of the equation

$$\frac{x}{y} = \frac{x^1}{y^1} ,$$

where x = extensometer deflection at room temperature for an unirradiated specimen;

- y = crosshead extension (or extension over the $5\frac{1}{4}$ -in. portion of the specimen located between the top and bottom doublers) for an unirradiated specimen at room temperature;
- x¹ = calculated (or hypothetical) extension of a 2-inch gage length of the irradiated, low-temperature specimen; and
- y¹ = the crosshead (or pull-rod) extension of the irradiated, low-temperature specimen, as measured by the LVDT in the experimental assembly.

A theoretical discussion concerning the reliability of this relationship will not be attempted at this point. The calculated values, however, are included with the data taken for this material. These data are tabulated in Tables A-41 through A-48. Representative specimens tested are shown in Figure 4.9.

4.10 Material J: Paraplex P-43

Specimen shapes and sizes, tests, and test characteristics for this material were identical to those for Material I. The discussion under Section 4.9 concerning extensometer measurements is also applicable to Paraplex P-43 specimens. The tests for both materials I and J were performed satisfactorily and according to plan, except for the high-dose part of the LH₂ run. Data for Material J are shown in Tables A-49 through A-56. Figure 4.10 is a photograph of tested specimens.

4.11 Materials K and L: Coatings

Material K is a coating consisting of Skyspar A 423-SA9185, untinted epoxy white, with SA9184 epoxy primer; Material L consists of W49BC12 acrylic black lacquer, with P40GCL Kemacryl lacquer pretreatment primer. These coatings were prepared on 15/16-in.-diam aluminum wafers. Four coatings of the white were applied and two coatings of the black. Specimens were irradiated (1) at ambient temperature in air, (2) while submerged in LN2, and (3) while submerged in LH2. They were subsequently shipped, at room temperature, to General Dynamics/Astronautics, where optical measurements

Figure 4.9 Material I Specimens

Figure 4.10 Material J Specimens

were made. With reference to these measurements, the following definitions apply:

Normal monochromatic reflectance is the ratio of the reflected radiant intensity from a body to that incident upon it at a particular wavelength when the incident radiation is directed normal to the surface.

Monochromatic absorptance is the ratio of the absorbed radiant intensity by a body to that incident upon it at a particular wavelength.

Monochromatic emittance is the ratio of the emitted radiant intensity to that of a blackbody at the same temperature at a particular wavelength.

Total normal reflectance is the ratio of the total (i.e., integrated over all wavelengths) reflected radiant intensity to the total intensity incident upon it in a normal direction.

Total emittance is the ratio of the emitted radiant intensity (integrated over all wavelengths) into a solid angle of 2π steradians to that of a blackbody at the same temperature.

Total solar absorptivity is the ratio of the absorbed radiant intensity by a body to that incident upon it from a blackbody at 6000°K.

The apparatus used was a Cary Model 14 spectrometer with an integrating sphere attachment, plus a Perkin-Elmer Model 13 double-beam photometer, which incorporates a hohlraum as a light source. The sample was placed inside the hohlraum, or the integrating sphere, where it was isotropically irradiated. The intensity of the normal, monochromatic component of the reflected radiation was compared to the monochromatic intensity of a blackbody. The ratio of these two intensities, which is equal to the monochromatic reflectance, was displayed on a recording instrument as a function of wavelength. The measurements were made over a wavelength region of from 0.30 to 33 microns.

From the measured monochromatic reflectance, ρ_{λ} , the monochromatic values of emittance, ϵ_{λ} , and absorptance, α_{λ} , were obtained as follows:

$$\epsilon_{\lambda} = \alpha_{\lambda} = 1 - \rho_{\lambda}$$

The total reflectance, ρ , solar absorptance, α , and total emittance, ϵ , at a given temperature were calculated by numerical integration from the following relationships:

$$\epsilon = \frac{\int_{0}^{\infty} e_{\lambda b}(T) \epsilon_{\lambda} d\lambda}{\int_{0}^{\infty} e_{\lambda b}(T) d\lambda}; \qquad \alpha = \frac{\int_{0}^{\infty} e_{\lambda b}(T) \alpha_{\lambda} d\lambda}{\int_{0}^{\infty} e_{\lambda b}(T) d\lambda}; \qquad \rho = 1 - \alpha$$

where $e_{\lambda b}$ = energy radiated per unit time per unit area by a black-body at temperature T and wavelength λ . The numerical integration was done with an IBM 650 computer.

The reflectance of the sample was measured at one temperature (100°F) only. Assuming that the monochromatic emittance will show only second-order variations with temperatures, the total emittance was calculated for 100°, 300°, and 500°K.

Details of the equipment used in the experiment are shown in Table 4.2. Data are tabulated in Tables A-57 through A-60. Figure 4.11, a photograph of representative specimens, shows the aluminum framework used to mount them in the cryogen chamber during the cryotemperature irradiations. Reference 6 is the complete report on the thermal-control-coatings tests, as published by GD/Astronautics.

Table 4.2 Equipment for Spectral Reflectivity Tests

Source	Spectrograph Prism	Detector	Diagona l	Filter	Wavelength Coverage (microns)	gth ge ns)
Integrating Sphere	Cary Model 14	Phototube	None	None	0.3 to 0.6	9.0
Tailgaceii (1000 ii)		Lead sulfide	None	None	0.6 to 2.0	2.0
Hohlraum (820°C)	Perkin-Elmer	Thermocouple	Mirror	None	1.36 to 12.0	12.0
	ייים כן ייים אוניים	window	Scatter-plate	None	12.0 to 19.1	19.1
			Scatter-plate	Agcl/Ags	19.1 to 24.4	24.4
			Reststrahlen Plate	None	24.4 to 33.0	33.0

Figure 4.11 Material K and L Specimens

V. DISCUSSION OF RESULTS

The number of specimens tested for each data point varies from one to four, depending upon the number calculated to be sufficient for satisfactory data precision. The original schedule on these quantities had to be altered somewhat during actual tests because of equipment limitations which developed during the equipment design phase. For instance, the compression-button test apparatus was designed in such a manner that only one compression button could be tested on each pull rod. Thus, because of the limited number of pull rods and the large number of specimens required in the overall experiment, only one specimen per data point was tested for certain materials.

Another factor which lowered the quantity of specimens per data point was the rejection of occasional specimens because of improper breaks or loosening of the doublers during break. The actual number tested in each case is shown in the tabulated data.

Past work in radiation-effects testing has, for the most part, related radiation damage in organic materials to the gamma doses involved. Damage in all types of materials from incident neutrons is, of course, of utmost importance, but because of the above practice, the planned doses on each material in the experiment were based upon gamma-radiation levels. Two doses for each material at each temperature were scheduled. The doses chosen were such that the resulting change in engineering properties would fall between a

threshold value and a critical value. The threshold value is defined as the radiation dose at which pertinent property changes just become apparent, whereas the critical value is defined as that dose at which a pertinent property changes by 40 to 60% of its initial value. The doses were selected by GD/FW personnel on the basis of results from prior radiation-effects tests.

Gamma doses which were actually recorded in the cryogen chambers of the experimental assemblies during both low-temperature runs deviated to some extent from values previously recorded in air at the same locations (see Figs. 3.9 and 3.12). For reasons that were given in Section III of this report, the gamma doses which were previously recorded in air will be regarded as being the actual doses at these locations. These values, along with measured neutron fluxes, are shown in Tables 5.1 and 5.2.

5.1 Material A: Hexcel 1252

Test data for Material A are plotted in Figure 5.1.* Tensile-shear strength (or force-to-break) in lb/in.² is plotted as a function of radiation dose for the three temperatures. As can be noted, the strength of the unirradiated specimens was more than doubled at reduced temperatures. Radiation, however, had an opposing effect. It served to reduce the strength of specimens at cryotemperatures and to increase significantly the strength of those at ambient temperature. All three curves appear to be asymptotic in character with increasing dose.

No value of tensile-shear strength for the high-dose, LH_2 -temperature condition was obtained, but the nature of the LN_2 curve

^{*}Figures 5.1 through 5.49 have been grouped at the end of this section to avoid interrupting text continuity.

Table 5.1

Average Low Radiation Exposures

Material Lion Name of Lergs/gm(C) Gamma Segretian Thermal Designation Lion Amount of Lergs/gm(C) Thermal Material Lion Restron Lion Thermal Lion Restron Lion Thermal Lion Restron Lion Re			Ambie	Ambient Irradiation	tion	IN2 IN	LN2 Irradiation	•	LH2 IF	LH2 Irradiation	
Hexcel 1252 1.0(10) 2.5(15) 3.4(14) 1.3(10) 2.3(15) 2.5(14) 1.3(10) 2.3(15) 2.5(14) 1.3(10) 2.2(15) Metibond 406 1.05(10) 2.5(15) 3.7(14) 1.3(10) 2.3(15) 2.5(14) 1.3(10) 2.2(15) Kel-P-81 5.45(9) 1.3(15) 1.06(14) 6.3(14) 1.0(15) 1.0(15) 1.0(15) Stafoam AA402 5.0(9) 1.2(15) 1.0(14) 5.2(9) 9.2(14) 9.8(13) 5.3(9) 9.0(14) Styrofoam 22 5.0(9) 1.2(15) 1.0(14) 5.2(9) 9.2(14) 9.8(13) 5.2(9) 9.0(14) Mylar-C 4.92(9) 1.3(15) 1.0(14) 5.2(9) 9.2(14) 9.8(13) 5.2(9) 9.0(14) Mylar-C 4.92(9) 1.3(15) 9.6(13) 5.2(9) 9.2(14) 9.5(13) 5.3(9) 1.0(15) Skyspar A423 4.92(9) 1.3(15) 9.6(13) 2.0(10) 4.0(14) 4.2(13) 5.6(9) 8.5(14) W-49	Material Designa- tion		Gamma [ergs/gm(C)]	Fast Neutrona (n/cm2)	Thermal Neutronb (n/cm2)	Gamma [ergs/gm(C)]	Fast Neutron ⁸ (n/cm ²)	Thermal Neutronb (n/cm2)	Gamma [ergs/gm(C)]		Thermal Neutronb (n/cm ²)
Metlbond 406 1.05(10) 2.5(15) 3.7(14) 1.3(10) 2.3(15) 2.5(14) 1.3(10) 2.2(15) Teflon TFE 4.9(9) 1.3(15) 1.5(14) - - - - Kel-F-81 5.45(9) 1.08(15) 1.06(14) 4.7(9) 1.0(15) 9.5(13) 4.7(9) 1.0(15) Stafoam AA402 5.0(9) 1.2(15) 1.0(14) 5.2(9) 9.2(14) 9.8(13) 5.2(9) 9.0(14) Styrofoam 22 5.0(9) 1.2(15) 1.0(14) 5.2(9) 9.0(14) 9.5(13) 5.2(9) 9.0(14) H-Film 4.75(9) 1.3(15) 1.0(14) 5.2(9) 9.2(14) 9.8(13) 5.2(9) 9.0(14) Mylar-C 4.92(9) 1.3(15) 9.6(13) 5.2(9) 9.5(13) 5.2(9) 1.0(15) Paraplex P-43 1.0(10) 2.5(15) 3.7(14) 1.3(10) 1.7(14) 1.3(10) 1.4(15) W-49-B012 4.75(9) 1.3(15) 9.6(13) 2.0(10) 4.0(14) 4.2	A	Hexcel 1252	1.0(10)	2.5(15)	3.4(14)	1.3(10)	2.3(15)	2.5(14)	1.3(10)	2.2(15)	5.5(15)
Kel-F-81 1.5(14) -	В	Metlbond 406	1.05(10)	2.5(15)	3.7(14)	1.3(10)	2.3(15)	2.5(14)	1.3(10)	2.2(15)	5.5(15)
Kel-F-8l 5.45(9) 1.08(15) 1.06(14) 4.7(9) 1.0(15) 9.5(13) 4.7(9) 1.0(14) Stafoam AA402 5.0(9) 1.2(15) 1.0(14) 5.2(9) 9.2(14) 9.8(13) 5.3(9) 9.0(14) Styrofoam 22 5.0(9) 1.2(15) 1.0(14) 5.2(9) 9.0(14) 9.5(13) 5.2(9) 9.0(14) H-Film 4.75(9) 1.3(15) 1.0(14) 5.2(9) 9.2(14) 9.8(13) 5.2(9) 9.0(14) Mylar-C 4.92(9) 1.3(15) 9.6(13) 5.3(9) 1.0(15) 1.0(15) Paraplex P-43 1.0(10) 2.5(15) 3.7(14) 1.3(10) 1.6(15) 1.7(14) 1.3(10) 1.4(15) Skyspar A423 4.92(9) 1.3(15) 9.6(13) 2.0(10) 4.0(14) 4.2(13) 5.6(9) 8.5(14) W-49-BC12 4.75(9) 1.3(15) 1.0(14) 2.0(10) 4.0(14) 4.2(13) 5.6(9) 8.5(14)	O	Teflon TFE	4.9(9)	1.3(15)	1.5(14)	-		ı	•	1	1
Stafoam AA402 5.0(9) 1.2(15) 1.0(14) 5.3(9) 9.2(14) 9.8(13) 5.3(9) 9.0(14) Styrofoam 22 5.0(9) 1.2(15) 1.0(14) 5.2(9) 9.0(14) 9.5(13) 5.2(9) 8.5(14) H-Film 4.75(9) 1.3(15) 1.0(14) 5.2(9) 9.2(14) 9.6(13) 5.2(9) 9.0(14) Mylar-c 4.92(9) 1.3(15) 9.6(13) 5.3(9) 1.0(15) 1.0(15) Paraplex P-43 1.0(10) 2.5(15) 3.7(14) 1.3(10) 1.6(15) 1.7(14) 1.3(10) 1.4(15) Skyspar A423 4.92(9) 1.3(15) 9.6(13) 2.0(10) 4.0(14) 4.2(13) 5.6(9) 8.5(14)	D	Kel-F-81	5.45(9)	1.08(15)	1.06(14)	4.7(9)	1.0(15)	9.5(13)	4.7(9)	1.0(15)	3.0(15)
Styrofoam 22 5.0(9) 1.2(15) 1.0(14) 5.2(9) 9.0(14) 9.5(13) 5.2(9) 8.5(14) H-Film 4.75(9) 1.3(15) 1.0(14) 5.2(9) 9.2(14) 9.6(13) 5.2(9) 9.0(14) Mylar-C 4.92(9) 1.3(15) 9.6(13) 5.3(9) 1.0(15) 1.0(15) Conolon 506 1.05(10) 2.5(15) 3.7(14) 1.3(10) 1.6(15) 1.7(14) 1.3(10) 1.6(15) Paraplex P-43 1.0(10) 2.5(15) 3.6(14) 1.3(10) 1.6(15) 1.7(14) 1.3(10) 1.4(15) Skyspar A423 4.92(9) 1.3(15) 9.6(13) 2.0(10) 4.0(14) 4.2(13) 5.6(9) 8.5(14) W-49-BC12 4.75(9) 1.3(15) 1.0(14) 2.0(10) 4.0(14) 4.2(13) 5.6(9) 8.5(14)	ম	Stafoam AA402	5.0(9)	1.2(15)	1.0(14)	5.3(9)	9.2(14)	9.8(13)	5.3(9)	9.0(14)	2.3(15)
H-Film 4.75(9) 1.3(15) 1.0(14) 5.2(9) 9.2(14) 9.8(13) 5.2(9) 9.0(14) 9	Ē4	Styrofoam 22	5.0(9)	1.2(15)	1.0(14)	5.2(9)	9.0(14)	9.5(13)	5.2(9)	8.5(14)	2.1(15)
Mylar-C 4.92(9) 1.3(15) 9.6(13) 5.3(9) 1.0(15) 9.5(13) 5.3(9) 1.0(15) Conclon 506 1.05(10) 2.5(15) 3.7(14) 1.3(10) 1.6(15) 1.7(14) 1.3(10) 1.6(15) Paraplex P-43 1.0(10) 2.5(15) 3.6(14) 1.3(10) 1.6(15) 1.7(14) 1.3(10) 1.4(15) Skyspar A423 4.92(9) 1.3(15) 9.6(13) 2.0(10) 4.0(14) 4.2(13) 5.6(9) 8.5(14) W-49-BC12 4.75(9) 1.3(15) 1.0(14) 2.0(10) 4.0(14) 4.2(13) 5.6(9) 8.5(14)	ප	H-F11m	4.75(9)	1.3(15)	1.0(14)	5.2(9)	9.2(14)	9.8(13)	5.2(9)	9.0(14)	2.3(15)
Conolon 506 1.05(10) 2.5(15) 3.7(14) 1.3(10) 1.6(15) 1.7(14) 1.3(10) 1.6(15) 1.7(14) 1.3(10) 1.6(15) 1.7(14) 1.3(10) 1.4(15) 1.4(15) 1.3(10) 1.3(15) 1.3(15) 1.3(15) 1.3(15) 1.3(15) 1.3(15) 1.3(15) 1.3(15) 1.3(15) 1.3(15) 1.0(14) 1.0(14) 1.3(15) 1.0(14) 1	н	Mylar-C	4.92(9)	1.3(15)	9.6(13)	5.3(9)	1.0(15)	9.5(13)	5.3(9)	1.0(15)	3:0(15)
Paraplex P-43 1.0(10) 2.5(15) 3.6(14) 1.3(10) 1.6(15) 1.7(14) 1.3(10) 1.4(15) Skyspar A423 4.92(9) 1.3(15) 9.6(13) 2.0(10) 4.0(14) 4.2(13) 5.6(9) 8.5(14) W-49-BG12 4.75(9) 1.3(15) 1.0(14) 2.0(10) 4.0(14) 4.2(13) 5.6(9) 8.5(14)	н	Conolon 506	1.05(10)	2.5(15)	3.7(14)	1.3(10)	1.6(15)	1.7(14)	1.3(10)	1.6(15)	4.0(15)
Skyspar A423 4.92(9) 1.3(15) 9.6(13) 2.0(10) 4.0(14) 4.2(13) 5.6(9) 8.5(14) W-49-BC12 4.75(9) 1.3(15) 1.0(14) 2.0(10) 4.0(14) 4.2(13) 5.6(9) 8.5(14)	ъ	Paraplex P-43	1.0(10)	2.5(15)	3.6(14)	1.3(10)	1.6(15)	1.7(14)	1.3(10)	1.4(15)	3.5(15)
W-49-BC12 4.75(9) 1.3(15) 1.0(14) 2.0(10) 4.0(14) 4.2(13) 5.6(9) 8.5(14)	Ж	Skyspar A423	4.92(9)	1.3(15)	9.6(13)	2.0(10)	4.0(14)	4.2(13)	5.6(9)	8.5(14)	2.1(15)
	ī	W-49-BC12	4.75(9)	1.3(15)	1.0(14)	2.0(10)	4.0(14)	4.2(13)	5.6(9)	8.5(14)	2.1(15)

a E < 0.48 ev b E > 2.9 Mev

Table 5.2

Average High Radiation Exposures

		Ambie	Ambient Irradiation	tion	I ZVI	LN2 Irradiation	a	LH2 Ir	LH2 Irradiation	
Material Designa- tion	Name of Material	Gamma ergs/gm(C)	Fast Neutron ^a (n/cm ²)	Thermal Neutronb (n/cm ²)	Gamma ergs/gm(C)	Fast Neutron ^a (n/cm ²)	Fast Thermal Neutronb (n/cm ²) (n/cm ²)	Gamma ergs/gm(C)	Fast Neutron ^a (n/cm ²)	Thermal Neutron ^b (n/cm ²)
A	Hexcel 1252	6.0(10)	1.6(16)	2.4(14)	5.2(10)	1.3(16)	1.4(15)			
щ	Metlbond 406	4.9(10)	1,6(16)	2.3(14)	5.2(10)	1.3(16) 1.4(15)	1.4(15)	,		
U	Teflon TFE	1,16(10)	2.6(15)	3.5(14)						
Q	Kel-F-81	1.0(10)	2.5(15)	3.6(14)	1.0(10)	1.9(15)	2.0(14)	1.0(10)	1.2(15)	3.0(15)
臼	Stafoam AA402	8,0(9)	2.2(15)	3.2(14)	1.3(10)	2.2(15)	2.3(14)	1.3(10)	2.5(15)	6.6(15)
Œ	Styrofoam 22	1.0(10)	2.6(15)	3.5(14)	1.2(10)	2.2(15)	2.3(13)	1.2(10)	2.0(15)	5.0(15)
5	H-F11m	8.0(9)	2.2(15)	3.2(14)	1.3(10)	5.0(15)	5.2(12)	1,3(10)	7.8(14)	2.0(15)
ш	Mylar-C	8.0(9)	2.2(15)	3.2(14)	1.3(10)	1.5(15)	1.6(14)	1.3(10)	1.35(15)	3.4(16)
н	Conolon 506	6.7(10)	1.7(16)	4.7(14)	5.0(10)	4.8(16) 4.9(15)	4.9(15)			
r,	Paraplex P-43	6.0(10)	1.7(16)	2.13(14)	5.0(10)	4.8(16) 4.9(15)	4.9(15)			
Ж	Skyspar A-423	1.05(10)	2.5(15)	3.7(14)	3.0(10)	4.0(15) 4.2(14)	4.2(14)	2.0(10)	3.0(15)	7.0(15)
ı	W-49-BC-12	8.0(9)	2.2(15)	3.2(14)	3.0(10)	4.0(15) 4.2(14)	4.2(14)	2.0(10)	3.0(15)	7.0(15)

a E < 0.48 ev b E > 2.9 Mev

suggests a possible leveling-off in strength reduction with successively higher radiation doses. The net effect of the two environmental components, both separately and in combination, was a definite increase in the tensile-shear strength of this adhesive.

One possible explanation for the opposing trend in strength between the ambient- and low-temperature specimens with incident radiation is proposed. The radiation-induced chain scission in the molecular structure serves to lower the shear strength of the adhesive, but the room-temperature annealing (or cross-linking) process in the ambient-temperature specimens ultimately results in a molecular configuration with higher shear-strength characteristics. In the low-temperature specimens, the chain scission occurs, but reduced molecular motion significantly inhibits the cross-linking process.

Visual analysis of the broken specimens revealed that about 75% of the failures were adhesive rather than cohesive.

5.2 Material B: Metlbond 406

The tensile-shear strength of this material is plotted in Figure 5.2 as a function of radiation dose for each of three temperatures. Tensile-shear strengths at low temperatures and no radiation are considerably lower than the ambient-temperature value for this material. This is contrary to Hexcel 1252. Another effect that was contrary to the Hexcel 1252 behavior was the sharp drop in tensile-shear strength at the higher dose at ambient temperature. No explanation for this is proposed, except to report that failure on these specimens was 100% adhesive, with 100% of the adhesive material remaining on one of the adherent strips.

The tensile-shear characteristics of the low-temperature specimens as a function of radiation dose were quite similar to those of Material A, as was the method of failure, except for the one condition discussed above.

5.3 Material C: Teflon TFE

Data taken in tests on this material are plotted in Figures 5.3 and 5.4. As discussed previously in this report, only ambient-temperature irradiations were made, and tests were performed on the ambient-temperature, no-irradiation condition only. Curves of breaking factor vs radiation dose and percent elongation vs radiation dose were both plotted, however, to show the zero values of breaking factor and elongation at the ambient-temperature, low-dose point. These zero values are representative of the crumbled specimens shown in Figure 4.3.

This material is notoriously poor in radiation resistance with air as the environment during irradiation. If irradiation and subsequent tensile tests could have been performed with the material submerged in cryogen, significantly different results could possibly have been obtained.

5.4 Material D: Kel-F-81

Data for this material are plotted in Figures 5.5 through 5.13. Figure 5.5 is a plot of ultimate tensile strength vs radiation dose at three temperatures. No data point is shown for the ambient-temperature, high-dose condition. As mentioned previously, the specimens for this condition broke in the process of removal from the static-irradiation mounting trays. This missing data-point

should actually exist, therefore, on the zero-strength line somewhere between the low- and high-dose points.

The unirradiated specimens demonstrated a much higher tensile strength at lower temperatures, but still suffered degradation in strength after being irradiated.

At $\rm LN_2$ temperatures, the ultimate tensile strength dropped only slightly with increased radiation, but at $\rm LH_2$ temperatures the strength dropped sharply after receiving the two doses shown.

Two possible explanations for these observations are proposed. One is concerned with the competing reactions of scission (weakening) and cross-linking (strengthening) which occur during irradiation. If the rates of these reactions vary widely with temperature, then the cumulative effect of the two could be sufficiently different at different temperatures to cause varying values in the measured property. The other explanation is concerned with the possibility of hydrogen-fluoride formation in the Kel-F-81 when submerged in LH₂. The formation rate would be enhanced during irradiation because of ionization of the hydrogen, and the resultant hydrogen fluoride could react chemically with the Kel-F-81 to cause scission in the chains and consequent lowering of the tensile strength.

Figure 5.6 is a plot of percent total elongation vs radiation dose at three temperatures. These curves demonstrate the relatively high ductility of this material at room temperature compared to that at cryotemperatures. Again, the LN2 and LH2 environments imposed during irradiation and subsequent tests have contrasting effects on the measured property.

Figures 5.8, 5.10, and 5.12 are stress-strain diagrams for this material under zero-dose, low-dose, and high-dose conditions.

They are all plotted to the breaking point for the specimens. Strain values are based upon pull-rod extensions.

The calculated (or hypothetical) extensometer extensions are plotted on stress-strain diagrams shown in Figures 5.9, 5.11, and 5.13.

The shapes of these latter curves follow closely those of the stress-strain diagrams for the measured (or pull-rod) strain. The percent elongation for calculated extensometer elongation are plotted as a function of radiation dose in Figure 5.7. The relative trends for these curves also follow closely those shown in Figure 5.6.

5.5 Material E: Stafoam AA 402

Data for this thermal-insulation material are plotted in Figures 5.14 through 5.17. Figure 5.14 is a plot of the force to compress 25% vs radiation dose for three temperatures. These forces are a function of (among other things) the bending strength of the cell walls, so that it is logical that unirradiated specimens would, at lower temperatures, require higher forces during compression.

After irradiation to a gamma dose of approximately 0.5x1010 ergs/gm(C), however, opposing characteristics appear. The ambient-temperature specimens require less force to compress 25% and the low-temperature specimens require more. Then, at higher doses, the required compression forces for the low-temperature specimens drop off significantly.

The factors which enter into the distribution of forces during compression of rigid foams are quite numerous, and the added

influence of radiation further complicates the picture. In view of this, a detailed analysis of reasons for the trends of these curves will not be attempted. Considerations of the plotted data in regard to end uses of the material, however, will be made.

Each of Figures 5.15, 5.16, and 5.17 are stress-strain plots for Material E over a deflection range of 0.25 inch (or 50% of specimen thickness) for three temperatures. The different figures are for zero-dose, low-dose, and high-dose conditions. The relative positions of the three curves in each figure are similar. It is obvious that the forces involved are significantly lower at the high dose, indicating an approximate threshold point for compressive resistance of this material at a dose of about 5×10^9 ergs/gm(C).

5.6 Material F: Styrofoam 22

Data for this material are plotted in Figures 5.18 through 5.21. These plots for the force-to-compress vs radiation dose at three temperatures and for stress-strain diagrams at three temperatures and three doses are identical in plan to those for Material E. The relative trends for curves on each plot are also similar to those for Material E. In addition, the material shows a radiation threshold for compressive strength. This varied from about 0.2×10^{10} to 0.5×10^{10} ergs/gm(C) of gamma dose, depending upon the specimen temperature (see Fig. 5.18). Other remarks in Section 5.5 pertaining to compression measurements are applicable to Material F.

5.7 Materials G (DuPont H-Film) and H (DuPont Mylar-C)

Data for Materials G and H are plotted in Figures 5.22 through 5.25. Figures 5.22 and 5.23 are plots of breaking factor vs radiation dose at three temperatures for the two materials. As suggested previously in this report, load data for these materials are regarded as possessing only borderline reliability because of the relatively high tare loads involved.

The plots of the data for the two materials are shown together to demonstrate the apparent similarity between the trends of comparable curves. The ultimate strength of both materials is significantly higher at lower temperatures, as was anticipated. The changes in breaking factor as a function of radiation at three temperatures seemed to follow the same pattern for both materials; that is, from zero dose up to a low-dose level, the strength of both materials increased at ambient and LH₂ temperatures and decreased at LN₂ temperature. At higher doses the strength of both materials at ambient and LH₂ temperatures decreased sharply, but those at the LN₂ temperature began to increase in strength. The percent elongation for both materials, as shown in Figures 5.24 and 5.25, followed the same trends at the three temperatures.

Observations on the characteristics of these materials are rather general, but in view of the circumstances surrounding the tests, as mentioned previously, no alternative was considered possible.

5.8 <u>Material I: Conolon 506</u>

Data from tests performed on Conolon 506 are plotted in

Figures 5.26 through 5.34. Figure 5.26 is a plot of ultimate tensile strength vs gamma radiation dose at three temperatures. It is interesting to note that at ambient and LN_2 temperatures, radiation doses up to 6×10^{10} ergs/gm(C) resulted in no significant change in this property of the material. At the LH_2 temperature, however, after a dose of 1.3×10^{10} ergs/gm(C), the ultimate tensile strength was up by a factor of 1.5. The difference in temperature between LN_2 and LH_2 is not regarded as the deciding factor in these contrasting tensile-strength curves; rather, it is felt that chemical reactions between ionized hydrogen and components of the adhesive served to strengthen the bond between the laminates.

Figures 5.27 and 5.28 are plots of percentage elongation vs radiation dose at three temperatures. The values of percentage elongation are based on pull-rod extension (or extension over the $5\frac{1}{4}$ -in. portion of the specimen between the inside edges of the doublers) and upon a hypothetical (or calculated) extension of a 2-in. gage-length section in the narrowed portion of the specimen. Considering standard deviations of the data in the tables, no significant change, as a result of irradiation, is noted in this property.

Figures 5.29 through 5.34 are stress-strain diagrams for Conolon 506. In Figures 5.29 through 5.31, the strain is based on pull-rod extensions. As can be noted, the curves for unirradiated specimens at three temperatures all coincide within the elastic limit and deviate from each other only slightly beyond that point to the point of fracture. The curve for specimens which were

irradiated and subsequently tested at ambient temperature was virtually a duplicate of the curve for unirradiated specimens, but diagrams for specimens which were irradiated and tested at cryotemperatures show decidedly higher slopes in the proportional range. This trend is contrary to all expectations, and a search of the literature has failed to uncover any previous work of a comparable nature on materials of this type and at these temperatures. No explanation for these data will be proffered at the present time.

Figures 5.32 through 5.34 are stress-strain diagrams based on the calculated extensions of a hypothetical 2-in. gage length in the narrowed section of the specimen. As can be seen, the relative trends of these curves are practically identical to those in Figures 5.29 through 5.31.

5.9 Material J: Paraplex P-43

Data from tests performed on this material are plotted in Figures 5.35 through 5.43. Figure 5.35 is a plot of ultimate tensile strength vs radiation dose for three different temperatures. As could be expected, the strength of unirradiated specimens is greater at lower temperatures. However, as in the case for Conolon 506, the effects of radiation at the different temperatures had little effect on this property of the material.

Figures 5.36 and 5.37 are plots of percent elongation vs radiation dose at three temperatures. Elongations in Figure 5.36 are based upon pull-rod extensions, and in Figure 5.37 on extensions of the hypothetical 2-in. gage length. The curves are similar for the two plots and, considering standard deviations for

the data, the changes in elongation as a function of radiation are insignificant.

Figures 5.38 through 5.43 are stress-strain diagrams for this material. Figures 5.38 through 5.40 are based on pull-rod extensions. The curves for unirradiated specimens (shown in Figure 5.38) and for those which have been irradiated to a low dose (shown in Figure 5.39) fall fairly close to the same line, considering standard deviations. Under conditions of high dose (Fig. 5.40), the curve for specimens at the LN₂ temperature is displaced significantly from the ambient-temperature curve. Again, this is comparable to unexplained data received from tests on Material I.

Curves in Figures 5.41 through 5.43 are based on extensions of the hypothetical 2-in. gage length and are comparable to curves in Figures 5.38 through 5.40.

5.10 Materials K and L: Thermal-Control Coatings

Data received from tests on these thermal-control coatings are plotted in Figures 5.44 through 5.49. Figures 5.44 through 5.46 are for Material K. The radiation doses incident on the specimens irradiated at cryotemperatures were considerably different from those planned for the experiment and from those which were received by the ambient-temperature specimens. This resulted from an error in placement of the specimens in the experimental assemblies.

It is interesting to note the deviations in α/ε ratios as a function of radiation dose for the ambient-temperature specimens

as compared to the absence of any change in this ratio (as a function of dose) for specimens which had been irradiated at cryotemperatures. The combined radiation and cryotemperature environment apparently serves to initially raise the value of the α/ϵ ratio, but increased radiation doses then have little further effect. These conditions were consistent at the three temperatures.

The curves for α/ϵ ratios as a function of radiation dose for Material L are rather inconclusive. There was little consistency between comparable curves at the three temperatures. These data are plotted in Figures 5.47 through 5.49.

The accuracy of the Cary Model 14 spectrometer, which works in the wavelength region of from 0.3 to 2 microns, is better than 2%. Since 95% of the solar energy is contained in this wavelength region, the error in the solar absorptance will not exceed 2%. The reproducibility of the Perkin-Elmer Model 13 spectrometer is approximately 3% of the full-scale pen deflection. This implies a relative error in the reflectance of 0.03 for the wavelength region between 2 and 33 microns. Since the blackbody energy peaks for 100°, 300°, and 500°K all fall within that wavelength interval, the emittances shown in Tables A-57 and A-59 may deviate within the limits of ±0.015. The error in the ratio of solar absorptance to emittance is given by

$$\frac{+}{-\epsilon} \left(\frac{\Delta \alpha}{\alpha} + \frac{\Delta \epsilon}{\epsilon} \right)$$
,

where $\Delta\alpha/\alpha = 0.01$, and $\Delta\epsilon = 0.015$.

In addition to these instrument errors, differences in surface roughness and contamination may result in a slight change of optical properties among apparently equal paint samples.

The influence of the nuclear radiation on the optical properties of the paints is most clearly observed on the monochromatic reflectivity curves (Ref. 6) (Figs. A-1 through A-13). There is no marked changed in the reflectivity of Material L specimens over the measured wavelength region, because the reflectivity is quite small in this region. Since the relative changes of reflectance, absorptance, and emittance are equal $(\Delta \rho = -\Delta \alpha = -\Delta \epsilon)$, the changes in the solar absorptance and total normal emittance are also small. Tables A-57 and A-59 show that the changes in the optical properties of acrylic black paint are less than the instrumental errors shown above.

For Material K, the irradiation tends to lower the reflectivity in the visible and near-infrared region of the spectrum. The reflectivity of epoxy white paint is quite small for wavelengths longer than 3.6 microns. Since the emission of radiative energy from bodies at 100°, 300°, and 500°K occurs primarily at wavelengths greater than 3.6 microns, an appreciable change in the emissivity does not occur. However, the solar absorptance changes considerably, as can be observed from the data in Tables A-57 and A-59.

Figure 5.2 Stress to Break vs Gamma Dose for Three Different Temperatures: Material B (Methbond 406)

Stress to Break (psi x 10^{-3})

Figure 5.3 Breaking Factor vs Gamma Dose for Ambient Temperature: Material C (Teflon TFE)

126

Percent Total Elongation: Pull-Rod Values

Percent Total Elongation: Calculated Extensometer Values

130

134

Force to Compress 25% (1b)

Figure 5.17 Compressive Load vs Deflection for Three Different Temperatures: Material E (Stafoam AA402); High-Dose Exposure

Figure 5.18 Force to Compress 25% vs Gamma Dose for Three Different Temperatures: Material F (Styrofoam 22)

Figure 5.20 Compressive Load vs Deflection for Three Different Temperatures: Material F (Styrofoam 22); Low-Dose Exposure

Figure 5.23 Breaking Factor vs Gamma Dose for Three Different Temperatures: Material H (Mylar-C)

Figure 5.24 Percent Total Elongation vs Gamma Dose for Three Different Temperatures: Material G (H-Film)

Percent Total Elongation

Percent Total Elongation

Utimate Tensile Strength (psi x lo-3)

151

Ultimate Tensile Strength vs Gamma Dose for Three Different Temperatures: Material J (Paraplex P-43)

Figure 5.35

Ultimate Tensile Strength (psi x lo-3)

Percent Total Elongation: Pull-Rod Values

Percent Total Elongation: Calculated Extensometer Values

163

167

VI. CONCLUSIONS AND RECOMMENDATIONS

Completion of this experiment marks the first known attempt to measure engineering properties of nonmetallic materials under the combination environment of nuclear radiation and cryotemperatures, i.e., to irradiate test specimens which are submerged in cryogen fluids and then to perform tensile and compressive tests on the irradiated specimens before removal from the cryogen. Practically every phase of the experiment, from designing and constructing test equipment to conducting the tests and analyzing the resulting data, was unique from the standpoint of the absence of any previously generated information in the field. The procedures and methods that were observed during these phases of the experimental program are documented in three quarterly progress reports (Refs. 7, 8, and 9).

As a result of the first year's operation, several conclusions can be drawn concerning the test techniques, test equipment, dosimetry measurements, and test data. In addition, recommendations can be made for modifications in the techniques and equipment as well as for future use or rejection of the test materials.

6.1 Test Techniques and Experimental Equipment

Because of the particular configurations of the irradiation facility and the necessity for remote-control operation in the experiment, all of the test methods and test equipment were unique and, in some cases, radical in design. Even so, the most applicable ASTM specification for each material was adhered to as closely as possible during the tests.

All of the test equipment operated satisfactorily and according to the original plan. An overall review of the tests, however, reveals that improvements in operation would result with certain changes in the equipment and instrumentation. Modifications which are recommended for incorporation into the experimental assemblies include (1) installation of additional dynamometers to several pull rods and (2) redesign of the support frameworks, shield components, liquid-level probe, and some of the specimen-mounting apparatus. These changes are expected to provide better operation of the assemblies and more reliable data from low-load specimens. A rework of the hydraulic servo system is also recommended to eliminate small leaks through valves and fittings and thus to raise the pressures in the slave cylinders.

As was pointed out in Section IV, the glued area of the adhesive material Hexcel 1252 was reduced to allow the specimens to be broken at the lower slave-cylinder pressures attainable at the relatively low crosshead speeds involved. It is now felt that raising the crosshead speeds for these specimens, as was done in the case of other high-strength materials, would have been a more satisfactory solution to the problem. Raising the crosshead speed actually results in a speed for the slave cylinder which more closely approximates that called for in the test plan. There will probably always be some small leaks in the hydraulic serve system which will cause slower slave-cylinder speeds with higher loads

for a given crosshead speed. Plotting calibration curves of slave-cylinder speed vs load for a given servo system installation would be impractical, but occasional spot-checks of slave-cylinder speeds with the LVDT instrumentation is both possible and advisable.

During the tests, deviations in pull-rod speeds from those called out in the test plan were invariably on the low side. This, according to some additional checks made with Material A adhesive specimens, had only a slight effect on the data.

In the case of rigid cellular foams, such as the thermal insulation Materials E and F, a 1.129-in.-diam by $\frac{1}{2}$ -in.-thick specimen was used in the experiment so that recorded data would be compatible with that produced in the vacuum section of the experiment. It is now felt that future tests on this type of material would provide better data if specimen sizes conformed to those called out in ASTM Designation D 1621-59T. This is because of the relatively high tare loads that exist on the pull rods.

High tare loads are also a problem when testing thin plastic films. It would be desirable, in the case of both films and cellular foams, to use a dynamometer in all pull rods that test these materials.

6.2 Dosimetry Measurements

A review of the nuclear radiation measurements which were made during the first year's operations leads to several conclusions and recommendations. First, the data obtained are satisfactory for predicting radiation-damage levels in the materials

tested, although they may be lacking somewhat in desired accuracy and completeness.

One reason for these short-comings is the fact that the test equipment is radically different in design and, consequently, techniques for making nuclear measurements within this equipment are in the first experimental stages. In addition, previously measured values of gamma doses around the reactor, which were made in air, were insufficient for predicting ideal locations for placement of foils throughout the metallic structure of the experimental assemblies. Other contributing factors were the unexpectedly high activation of the equipment, which hampered the manual retrieval of foils; problems involving the lead shield, which resulted in the loss of several foils; and lack of nuclear-measurement technology at cryotemperatures.

It is felt that unexpected factors are normal when new approaches to nuclear testing techniques are being explored, and that the experience gained in this first year of operation will result in improved data in successive tests.

Recommendations for improvement in the quality and quantity of future data include the following: (1) tests should be conducted to determine the response of several types of gamma and neutron dosimeters at cryotemperatures; (2) methods for mounting measurement devices should be improved to facilitate their manual removal from a highly radioactive experimental assembly; and (3) nuclear measurement data received from the first irradiation tests using

these expanded experimental assemblies should be analyzed from the standpoint of establishing future radiation levels at various points in the cryogen chambers.

6.3 Test Results and Recommendations for Materials

As outlined previously in the text, the procedure for the cryotemperature tests was to position the test specimens in the cryogen chamber of the experimental assemblies and locate the assemblies next to the reactor face. The irradiation run was carried out with the specimens submerged in cryogen fluid. Operation of the reactor was terminated after the required radiation dose was achieved, and the specimens were then pulled in tension and compression without intervening warmup. Nine data points were recorded during each test on each material. These included those from all combinations of three radiation doses (zero, low, and high) and three temperatures (ambient, -3200F, and -4230F). Ambient-temperature irradiations were conducted in an air environment with specimen temperatures ranging from 110°F to 143°F. sequent tensile and compression tests were carried out with an Instron test machine in the Irradiated Materials Laboratory of GD/FW.

A resume of the results of the tests on each material, along with recommendations for its use, is given below.

Adhesives

Hexcel 1252. This material demonstrated increased tensileshear strength after irradiation at room temperature. At cryotemperatures, the strength before irradiation was considerably higher than the room-temperature value. Radiation then served to reduce this strength somewhat, but the value still remained higher than the room-temperature/no-irradiation level. The material is therefore highly recommended for use in this combination environment, up to the tested dose level of 5×10^{10} ergs/gm(C) of gamma radiation.

Metlbond 406. This adhesive suffered severe degradation in tensile-shear strength at all temperatures after irradiation to a dose level of about $3x10^{10}$ ergs/gm(C). It is not recommended for use under these environmental conditions.

Seals

Teflon TFE. This material was tested at ambient temperature in air only. After a relatively low dose of radiation under these conditions the test specimens crumbled to powder. Further testing is needed before recommendations can be made.

Kel-F-81. This fluorocarbon plastic was tested under all conditions. Its properties were excellent under no-irradiation conditions, but relatively small doses of gamma and neutron radiation were sufficient to cause significant degradation in tensile strength and severe embrittlement. It is not recommended for use in a radiation environment at any temperature.

Thermal Insulations

Stafoam AA402 and Styrofoam 22. Results of tests were similar for both of these materials. Their compressive strength at cryotemperatures increased with incident radiation up to a gamma dose of about 5×10^9 ergs/gm(C). Beyond this dose level, the strength dropped off severely. Irradiation at ambient temperature ($\sim120^\circ F$) served to reduce the compressive strength significantly. Both materials are recommended for use under relatively low radiation environments at cryotemperatures.

Electrical Insulations

DuPont H-Film and Mylar-C. These materials were tested in tension in thin-film form. Contrasting values in tensile strength for different radiation doses and different temperatures were noted. Further testing is needed, and specific recommendations are not considered possible at this time.

Structural Laminates

Conolon 506 and Paraplex P-43. Tensile properties of these two laminates were measured and found to be similar. The ultimate tensile strength of both materials was higher at cryotemperatures than at room temperature, as could be expected, and remained high after doses of 5 to 10¹⁰ ergs/gm(C). Both materials are recommended for use under a radiation-cryotemperature environment to the abovementioned dose level.

Thermal-Control Coatings

Skyspar A-423-SA9185 and Sherwin Williams W-49-BC12. After irradiation at room temperature, the subsequently measured optical properties of these two coatings showed variations as a function of radiation dose. After irradiation at cryotemperatures, the properties remained fairly constant as a function of radiation dose. No recommendations are attempted with the data available from these tests, but the data shown in the text are suitable for possible correlation with results from other related tests.

The test results are given in this report as plotted and tabluated data (Section V and Appendix A). Thus, further analyses can be made when more detailed information is required concerning specific properties of the various test materials.

Overall, the tests conducted in the combined environment of nuclear radiation and cryotemperature were successful, particularly in view of the radically different testing techniques that were used. Refinement of these techniques will be accomplished with future use of the experimental assemblies.

Since the information learned from tests of this nature is required in the development of nuclear-powered spacecraft, and since the potential for future tests that utilize the assemblies in conjunction with the GTR at NARF is regarded as being almost unlimited, it is recommended that the testing of engineering materials in radiation fields at cryotemperatures be continued.

APPENDIX A

TABULATED TEST DATA ON ALL MATERIALS AND PLOTS OF MONOCHROMATIC REFLECTIVITY AND ABSORPTIVITY OF THERMAL-CONTROL COATINGS

Radiation-Cryotemperature Test

Material Type Structural Adhesive

	Average	ze Radiation	ac	Pu11	Ter	Tensile Sh	Shear Str	Strength (1	(1b/in.2)	. !
Test Temperature				Rod		Sŗ	Specimen			Average
	Type	Gamma [ergs/gm(C)]	Fast ** Neutron (n/cm ²)	(in/min)	1	2	3	+	5	Strength (1b/in.?)
Amblent	No	0	. 0	0.05	2436	2532	2028	2300	1912	2240
	Low	1.0(10)	2.5(15)	0.05	38'મ	3280	4560	1,840	4560	4212
	High	6.0(10)	1.6(16)	0.05	0094	0445	2640	1+800	η 6 80	5028
activities on the	No	0	0	0.010	5120	4880	5120			5040
Nitrogen	Low	1.30(10)	2.3(15)	0.003	04,94	5200	3760	0924		4592
	High	5.2(10)	1.3(16)	0.003	3520	1+320	4920			€424
Liania	No	0	0	~0,010	9009	6000	5800	5920		5928
Hydrogen	Low	1.3(10)	2.2(15)	~0.010	00 1 7†1	009+	1+560	0094		4536
	High	0	0				•	1	1	A POPE TO A

*Read 1.0(10) as 1.0 x 10^{10}

TABLE A-2

Radiation-Cryotemperature Test Data: Material B

Metlbond 406

Material Type Adhesive

L sand			- 9		D.11	Tel	Tensile Sh	Shear Str	Strength (1	$(1b/1n.^2)$	
A. Nozdanie	E & C C C C C C C C C C C C C C C C C C	AVGI BY	Exposure		Rod		į.	8			Average
EJAGRAMANINAKA FILIS	Temperature	Type	Gamma Jergs/gm(C)	Fast** Neutron			ત	. κ		7	Strength (10/in.2)
ALIE MARINE ST.	4 2 2 4 2 4 4	No			0.05	5000	5800	5950	5350	5724	5560
CHORETICUS SUPE		Low	1.05(10)*	2.5(15)	0.05	5500	6080	5520	6160	5950	5940
een post dastern makel	THE STATE OF THE S	High	4.9(10)	1.6(16)	0.05	1000	500	069	800	770	752
182		ON			0.007	3340	2920	2740	2960		2990
gentled the critical	nitrogen	Low	1.30(10)	2.3(15)	~0.005	2320	2400	2160			2292
ಸರೀಕಾ ಕಾರಣವಾಗುತ್ತು		High	5.2(10)	1.3(16)	0.003	1600	1760	1440	!		1600
A		No			010.00	3120	3080	3560			3250
PHI ATTICKE BEETENS	Liquia Hydrogen	Low	1.3(10)	2.2(15)	w.005	1550	1660	2490	2210	I	1978
anders and		High									

*Read 1.05(10) as 1.05 x 10^{10} **E > 2.9 MeV

TABLE A-3

Radiation-Cryotemperature Test Data: . Material C

Teflon TFE

Test Ten	1	mbient			Material 9	Type Seal	
Full-Rod % Total (4.00-	Full-Rod Speed % Total Elongation (4.00-in. Gage)	0 <u>5</u> 0" 78	n.,/min		Exposure Gamma Unirradi Neutron	α <u>⊢</u>	tedergs/gm(C)
			Specimen	A Property of the Control of the Con	et-mean	eage_e	Load for
No. 1		No.		No.	3	Φ }	ا ب
Load	Defl.	Load	Defl.	Load	Defl.	Load	Defl.
(15)	(1n.)	(1p)	(12.)	(1b)	(1n.)	(10)	(1n.)
, O	0	0	0				0
9	0.0 0.0	ナナ	0.05		r driver	7.7	0.0
0. 0.	0.10	10.1	0.10		482] c prov		0.10
10.8	0.15	12.0	0.15	70 PM	्रेची <u>ः</u> कुलि	+	0.15
13	0.35	13.3	0.25		ilga sh dhe	13.2	0.35
13.6	0.50	14.25	0.50		new run all	13.9	0.50
14.3	0.75		0.75			14.7	0.75
14.8	1.00	15.7	1.00			F-7-3	1.00
15.6	1.50	16.7	1.50	· w		16.2	1.50
16.3	2.00	17.4	2.0			16.9	2.00
17.0	2.50	17.95	2.5			17.5	(d
17.25	2.75	18.1	2.82			•	
•	•		_		e e e	17.2	(7)(
17.1	3.12						
Note: - N	No data were	led hof	om speci	s irradiat		temperatu	a 1
•	∄	led because of ina	ability to so	ra ne beri 1ccessful]	s speci	& LAZ v s to the	esus were film
		ı	,		4		Ė

TABLE A-4

Material Radiation-Cryotemperature Test Data:

Kel-F-81

/m1n in./ PE PS 90 0.50 in/min Pull-Rod Speed (Avg) 0.50 in/ Ultimate Tensile Strength (Avg) % Total Elongation Pull-Rod (5.25-in. Gage) Extensometer (2-in. Gage)

Ambient Seal Matl Type Test Temp Exposure

ergs/gm(c) Gamma Unirradiated

					Speci	ecimen					2,500		Verage	P Load	
	No. 1			No. 2			No. 3			No. 4		for Gi	lven De	Given Deflection	on.
Load	Load Defl.	Defl. Defl. (Rod) Exts)	Load	Defl.	Defl Defl (Rod) (Exts)	Load	Defl.	Defl. Defl. (Rod)(Exts.)	Load	Defl. Defl. (Rod) (Exts.)	Def1	Load	~~~~~	Defl.	Defl.
(1b)	(tn.)	(1n.)	(1P)	(in.)	(1n.)	(1b)	(1n.)	(1n.) (1n.) (1b)	(1p)	(in.)	(in.) (in.)	(1b) in. ²		(1n.)	(in.) (in.)
0	0		0	0								0	0	0	0
80	.05		100	.05								90	2800	0.05	.0115
130	.10		150	.10								140	14480	01.	.0230
150 ·	.125		168	.125	. Caronia							159	5088	.125	: 1
167	.150		174	.150							THEFT	171	5472	.150	
173	.20		173	.20	egisti/dimur _i							173	5536	.20	.0440
143	04.		147	04.							Special (PAS	145	0494	04.	
134	.45		134	.45	·						d stable	134	4288	.45	.43
135	.50		133	.50							阿 亞 (1 阿 阿	134	4288	.50	
138	1.0		136	1.0								137	4384	1.0	0.95
14	2.0		142	2.0							G GUINA	143	4576	2.0	1.90
146	3.0		148	3.0			,			-		147	4004	3.0	
148	3.5		151	3.5							Selevo Se	150	7+800	3.5	
158	4.0		162	4.0		,					2002	160	5120	0.4	
180	4.75	3.80	170	4.18	3.20							166	5312	4.18	3.20
											MATERIA SERVICE	175	5600	4.46	3.50

TABLE

Radiation-Cryotemperature Testa Data : Material

Kel - F - 81

in./min 1568 Pull-Rod Speed (Avg) 0.2
Ultimate Tensile Strength (Avg)
% Total Elongation
Pull-Rod (5.25-in. Gage)

8888 Extensometer (2-1n. Gage

Test Temp Ambient Matl Type Seat

109 Neutron Exposure Gamma

-	_			-	-		-			-					5 S					-4 en -900	
	ton	Defl.	(th.)	0	.002	400.	900.	900	010	070	210.	.014	0.16	7							
	Average Load Given Deflection	Defl. (Rod)	(fa.)	0	.0086	4610.	.0258	0344	040	77.00	2720	1090	0693						The state of the s		
	Averag Iven D	Load 1b/	A	0	192	384	576	768	096	22.5	777	1376	1568	1 m 1 m							The state of the s
	for C	Load	(1b)	0	9	12	18	7.7	30	200	9	43	140	· 1000 (1000)						10000000000000000000000000000000000000	Carpenda Carpe
		Defl. Defl. (Rod)(Exts)	(fin-												ない		\$\\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\			73.00 70.00	
	No. 4	Defl.	(in.)							(4.5) (4.6) (3.2)				1. 图本证	计算证据					_	
		Load	(Ib)												海湖北京			Section And		To the	
		Defl. Defl. (Rod)	(1n.)	5	.0038	+1800.	.0125	.016							· · · · · · · · · · · · · · · · · · ·	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			A THE PARTY.		4
	No. 3	Defl. (Rod)	(IB-)		.0167	.037	.055	.070								美国教育			できる	1	1
ecimen		Load	(01)		11	24	36	146	*				*				Section 1				
Speci		Defi (Exts.	(18.)		.0051	000	.0135	.0156													
	No. 2	Defl. (Rod)	, HT		.024	-045	.063	.073													
		Load					45	52											94. 14.	ş4j	
		Defl. (Exts)			I.	•0093	.0137	.0168													
	No. 1	Load Defl. Defl. (Rod) (Exts)	c		0185	-036	.053	.065													
		Load	C		14	27	40	64											14		

Radiation-Cryotemperature Test Data:

Material

81 **[34** Kel

ergs/gm(c) Test Temp Liquid Nitrogen Exposure Unirradiated Seal Neutron Type Gamma Matl ' in./min psi 28 38 19,200 2.59 1.60 0.18 Pull-Rod Speed (Avg)
Ultimate Tensile Strength (Avg)
% Total Elongation
Pull-Rod (5.25-in. Gage)
Extensometer (2-in. Gage)

Defl. (in.) 400. 008 .012 .016 .020 .024 .028 for Given Deflection Def1. .0342 .0685 (Rod) .0172 .1030 (111.) .0514 Average Load .0858 .122 12096 17120 18400 19200 14902 8480 4256 Load Load 1b/ 1n? (Control) (1p) 265 378 7466 535 575 900 133 (1n. (Exts. Def1 (Rod) (4n.) Defl. 4 No. Load (1p) (1n.) Def1. (Rod)(Exts)Defl. (1n.) No. Load (1p) Specimen (Exts.) Defl. (in.) .0249 .107 Defl. (Rod) (1n.) .020 .031 .053 No. 0 Load (TP) 300 900 180 450 0 (10:) Defl. .0319 (Exts) (Rod) Load Defl. (fn.) .035 .015 .137 .087 No. C

80 0

220

900 500

(1P)

О Radiation-Cryotemperature Test Data: Material Kel - F - 81

Nitrogen Liauid Seal Neutron Matl Type Test Temp Exposure Gamma in./min psi 28.28 18880 2.30 0.30 Vitimate Tensile Strength (Avg.) & Total Elongation
Pull-Rod (5.25-in. Gage)
Extensometer (2-in. Gage) Pull-Rod Speed (Avg

ergs/gm(c)

						Specimen	men							AVPTRO	F.O.P.d	
		No. 1			No. 2			No. 3			No. 4		for G	Given Deflection	aflect.	lon
	Load	Load Defl. (Rod)	Defl. (Exts)	Load		Defl (Exts)	Load	Defl.	Defl. Defl. (Rod)(Exts.)	Load	Defl. Defl.	Defl		Load Load	Defl.	Defl. Defl. (Rod) (Exts.)
····	(1b)	(tn.)	(101)	(1b) (4n.)		(1n.)	(1b)	(1n.)	(1n.) (1n.)	(IP)	(in.)	(in.) (in.	(1b)	(1b) 1n2	(4n.)	(tn.)
	0	0	0	0	0								0	0	0	0
	9	.003		130	.016							Marine at 17	98	3136	.0172	₩00.
18	250	.067		280	.042	e e e e e e e e e e e e e e e e e e e							193	7176	.0342	1
L 27	900	.137	.0319	450	.070	-							281	8992	.0514	.012
				580	.105	.02h							365	11680		
												THE REAL PROPERTY.	144	21141		
												A STEP SERVICE	512	48E9I	.1030	.024
												Name Relief	590	18880	.121	.028
												S STERRIFFE				
,												-				
L												(p) 22 m				
									******			-				
		2.7		,	. ,											
						ALC: COLLEGE										
ŀ						2						١	A			

A-8 TABLE

Test Data: F - 81 Radiation-Cryotemperature Kel -

Material

/min 9895 $\overline{\omega}$ Pull-Rod Speed (Avg)
Ultimate Tensile Strength (A
% Total Elongation
Pull-Rod (5.25-in. Gage)
Extensometer (2-in. Gage)

erga/gm(C) 1010 Seal 86 Matl Type Test Temp Neutron Exposure Gamma

					Specimen	nen					22500	1	Verage	Load	
	No. 1			No. 2			No. 3			No. 4		for Gi	ven De	Given Deflection	no.
וַק	Defl. (Rod)	Load Defl. Defl. (Rod) (Exts)	Load	Defl. Load Defl Defl (Exts) (Rod) (Exts)	AND RESIDENCE OF THE PERSON NAMED IN		Defl. (Rod)	Defl. Defl. Load (Rod)(Exts.)		Defl. (Rod)	Defl. Defl. (Rod)(Exts.	Load		Defl. Defl. (Rod)(Exts.)	Defl. Exts.)
3	(1b) (1n.)	(fn.)	(1p)	(1n.)		(1b)	(in.)	(1n.)	_	(in.)	(in.) (in.)	(1b) in?		(1n.)	(1n.)
	0		0	0				·			- order	0	0	0	0
100	.011		100	.015	A A Salva						U WARE TO	112	3584	.0172	400.
215	.033		250	.038							ere som	223	7136	.0342	.008
365	.058		004	₹90•							* PRE STREET	327	10464	.0514	.012
515	.090	.0209	540	660.	.0231			alle più cur a			TO A STATE OF	426	13632	.0686	.016
								Salamaia a			ercana s	501	16032	.0858	.020
												528	1690d	.0945	.022
					TAKE F						A 14				
					STEP SERVE						10138 3144				
			,					***			. порту <u>к</u>				
					MC 1820-MCC			A POST			en in				
											T.C.				
											on you				
								X-0-14							,
											WASHINE S				

TABLE A-9

Radiation-Cryotemperature Test Data: Material D Kel - F - 81

Defl. Exts.) (1n.) .008 +00° 012 016 .020 .024 028 .032 .033 ergs/gm(c) Average Load for Given Deflection Def1. (Rod) (1n.) .0858 0172 .0342 ,0514 .0686 .1030 .1202 .1362 .1535 Liauid Hydrogen 22112 18400 14784 25824 29280 31360 11136 7454 Load Load 3776 1b/ fut (d1) Unirradiated 0 Control 118 232 348 462 575 691 807 915 980 Seal 0 Defl 3 (1n.) (1n.) (Rod) Gamma Un Neutron Matl Type Test Temp Exposure Def1. # No. Load (TP) in./min psi (in.) (in.) Defl. (Rod) (Exts) 98.98 Defl. No. 2,92 31360 99 Load (1p) Specimen 0.24 .0326 Defl. (Rod) (Exts. (1n.) (1n.) Pull-Rod Speed (Avg) 0.
Ultimate Tensile Strength (Avg)
% Total Elongation
Pull-Rod (5.25-in. Gage)
Extensometer (2-in. Gage) Defl. 040. .068 .102 .140 No. 0 Load (1p)280 500 7,40 960 0 Defl. (tp.) (Exts) .0337 (Rod) (in:) Load Defl. .023 .059 .093 .129 .167 No. 0 (11) 1000 285 370 620 820 C

Test Data: - 81 Radiation-Cryotemperature

Material

Liquid Hydrogen 10^{15} 109 Seal Gamma Neutron Matl Type Test Temp Exposure /mtn in./ PS BS 2.06 Pull-Rod Speed (Avg) 0 Ultimate Tensile Strength (Avg) % Total Elongation Pull-Rod (5.25-in. Gage) Extensometer (2-in. Gage)

erga/gm(C)

	Lon	Defl. (Exts.)	(4n.)	0	t ₀₀ .	008	010	.016	.020	.023	.025				
e Load	eflect:	Defl. (Rod)	(1n.)	0	.0172	0342	0514	.0686	٠,	060	.108				
Average Load	Iven De	Load Load 1b/	1n?	0	2880	5760	8640	11520	14432	16640	18080				
	for G		(1b) 1n?	0	96	180	270	360	451	520	565		-		
		Defl. Defl. (Rod)	(in.) (in.												
	No. 4	Defl. (Rod)	(in.)										 		
		Load	(1p)												
		Defl. (Exts.)	(1n.) (1n.)												
	No. 3	Defl. Defl. (Rod)(Exts.)	(1p.)												
nen		Load	(1b)												
Specimen		Defl (Exts)	(1n.)							.0256					
	No. 2			0	.023	.043	.056	.075	٤60.	.110					
		Load	(1b) (1n.)	0	110	190	270	360	0474	520				p. 430000 ;	
		Defl.	(1n.)	,							.0247				
	No. 1	Load Defl. Defl. (Rod) (Exts)	(4n.)	0	.015	.029	.043	.058	.071	.085	.106				
		Load	(1b)	0	60	130	230	320	420	530	610				

TABLE A-11

Radiation-Cryotemperature Test Data: Naterial D

erga/gm(c) Liquid Hydrogen Gamma 1.0 \times 1010 Neutron 1.2 \times 10 Seal Matl Type Test Temp Exposure /min in./ 2898 Pull-Rod Speed (Avg) 0.
Ultimate Tensile Strength (Av & Total Elongation
Pull-Rod (5.25-in. Gage)
Extensometer (2-in. Gage)

			·	W		·			deres serves	-	w/	•							
	lon	Defl. Defl. (Rod)(Exts.)	(in.)	0	400*	.008	.012	.013	Į.										
e Load	Civen Deflection	Defl. (Rod)	(in.)	0	.0172	.0342	.0514	.0535											
Ivera 2	ven D	Load Load 1b/	$_{1n}^{2}$	0	2048	4160	5824	0649											
	for G		(1p)	0	49	130	182	203											
J:, Dru		Defl. Defl. (Rod)(Exts.	(1n.		W-12-13-			.5.6511	12.10.40	24290	OS PACSAGRA	THE STREET	-	Juse M	TURATIVE	- Indian	V VIII C	TIN BU	
	No. 4	Defl. (Rod)	(in.)																
		Load	(1b)																
		Defl. Defl. (Rod)(Exts.)	(1n.) (1n.) (1b)																
	No. 3	Defl. (Rod)	(1n.)																
1men		Load	(1b)																
Speci		Defl.	(in.)				.0156								AND DECEMBER				
	No. 2	Defl. Defl. (Rod)	(1n.)	0	.029	.051	.067												
		Load	(1P)	0	75	145	225										,		
		Defl. Defl. (Rod) Exts)	(1n.)			.0093													
	No. 1	Load Defl.	(lb) (in.)	0	.019	040.													
		Load	(1b)	0	70	180													

Radiation-Cryotemperature Test Data: Material E

Stafoam AA 402

Test Temperature Ambient Pull-Rod Speed (Avg) Force to Compress 25% (Avg.) Ambient

Fatl Type Thermal Insulation
Exposure
Gamma Unirrad. (Control)ergs/gm(U)
Weutron n/em2

		Specimen	nen			Avg Load	LOZO ZOŢ
~ 1	_	લ		6)	ACTUAL AC	raven ber	#01300#3
Load (Instron)	Deflection (in.)	Load (Instron) (1b)	Defilection (1n.)	Load (Instron) (1b)	Deflection (in.)	Load (1b)	Deflection (in.)
					0	0	·
. 01	.01	ŗ,	10	. 5	.01	6.7	5
27.5	.02	22	.02	20.2	.02	23.2	O O
37.5	.03	35	.03	34	.03	35.77	03
42.5	†0 °	41.3	†O*	T†7	40	41.5	†O
44	.05	43.8	05	77	.05	43.9	C
45	.10	41.8	.10	43.5	10	43.4	0 [
42	.15	41.9	75	[T]		47.3	دد
75	50	43.2	50	41.5	20	42.2	20
42.5	25	47,2	70	<u> </u>	ያ የ	0 77	C U
49	30	52.5	30	617	30	50 02	30
			TORRESON				o <u>mer</u>

TABLE A-13

Radiation-Cryotemperature Test Data: Material E Stafoam AA402

Ambient Test Temperature

5.0 x 109 Gamma Weutrons Full-Rod : Low Exposure

uc	erss/gr(c) n/om ² in./min
Thermal Insulation	8.0 x 109 2.2 x 1015 Speed 0.05 Compress 2521
Type	h Exposure Ganna Neutron Pull-Rod
指红	H1gh

Low-Exposure Specimen	ad Load Deflection tron) (Dynamometer) (1n.)				· CORNEL PER	TO SECURE	neraz italiakok (200		THE SHOPE !		
a kessy/s	Load (Instron) (1b)	0	0	C 2	5.0	10.0	15.0	1978 balloudinet		Name of the last	

la de	8	.01	.02	+10	90•	03	125	Villipa		- Marcon	
High-Exposure Speci	Load Dynamone (ear)										
H 69.	Load (Instron)	1.0	0.0	2.5	. √. ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °	0 0	7, 0, 41		The state of the s		

Radiation-Cryotemperature Test Data: Material E Stafoam AA402

Thermal Insulation Unitradiated ergs/gm(C)
Matl Type Exposure Gamma Neutron
Test Temperature Liquid Nitrogen Pull-Rod Speed (Avg) 0.05 Force to Compress 25% (Avg) 126 15

					uoD)	(Control)	
		Specimen	men	·		Avg Load for	for
	No. 1			No. 2		given Dei]estion
Load (Instron)	Load (Dvn.)	Def1.	Load (Instron)	Load (Dyn.)*	Defl.	Load (Dyn.)*	Dafi.
(41)	(10)	(in.)	(12)	(1p)	(in.)	(16)	(in.)
0	0	0	0	0	0	0	0
7.2	09	.0156	16	32	.012	36	0.01
65	110	00400	40	77	.020	69	0.02
88	120	720.	09	98	.033	94	0.03
95	120	.123		121	.048	112	0.04
76	128	.167	90	131	.091	119	0.05
100	128	.216	93	126	.139	125	0.07
100	120	264	76	131	187	126	0.10
95	115	.311	95	136	.234	126	0.15
26	110	.328	93	126	. 285	131	0.20
143	200	.352	85	117	.338	130	0.25
	v		125	172	.365	120	0.30
						113	0.333
						184	0.36

* Dynamometer

Radiation-Cryotemperature Test Data: Material E

Stafoam AA402

Test Temperature Liquid Nitrogen

Low Exposure

Gamma 5.3 x 109

Wentrons 9.2 x 1014

Full-Rod Speed 0.045

Force to Compress 25% 140 15

tion	ergs/gm(c) n/om- in-/min
Thermal Insulation	1.3 x 10 ¹⁰ 2.2 x 10 ¹⁵ 5psed 0.046 Compress 25%
Mat Type	High Exposure Garma Neutron Pull-Rod Force to

Low-E	Low-Exposure Specimen	ü
Load (Instron) (1b)	Load (Dynamometer)	Deflection
0	0	0
23	35	0.025
51	27	0+0.0
81	122	0.065
93	140	0.114
93	140	0.155
102	153	0.218
102	153	0.253
95	142	0.293
125	262	0.328
	अस्य प्रम	Name of the last o
	1238	ina

High-	Exposure Spacimen	inen
Load	Load Load	rethected
(12)	(11)	S
0	0	
10	25	0.018
20	45	0.036
33	62	0.051
1+3	75	0.068
	79	0 0
ኒ ተ	75	0.133
£ 1 7	65	0.170
30	45	0.271
23	52	0.323
70	125	0.345
		or we get a

Radiation-Cryotemperature Test Data: Material E Stafoam AA402

4	at Temper	ature Linid	dd Hydrogen		Matl Type		Thermal Insulation	tion
Full-	۲ <u>ق</u>	A 8	AVB	1n./min	Expo	کے	Unirradiated er	ergs/gm(c) n/cm ²
							(Control)	
			Specimen	nen	÷		Avg Load	for
		No. 1			No. 2		given Deflection	lection
	Load	Load	Def1.	paor	peoT	Defi.	Load	Dafi.
<u></u>	(Instron) (1b)	(1p) (1p)	(1n.)	(1b)	\$ (0, 0) \$ (0, 0) \$ (0, 0)	(in.)		(in.)
	0	0	0				0	0
	6	14	600.0				17+	0.009
<u></u>	24	36	0.020				36	0.020
	63	95	0.054				95	0.054
<u></u>	65	98	0.099				98	0.099
	60	06	0.103				06	0.103
	55	83	0.196	- THE STREET - THE			83	0.196
<u> </u>	35	53	0.272				53	0.272
	70	105	0.282		ellement - Amery I		105	0.282
							THE RES	
							and the same	
							27.22	

* Dynamometer

A-17 TABLE

Radiation-Cryotemperature Test Data: Material Stafoam AA402

ergs/gm(C) n/cm in./min 15 Liquid Hydrogen Force to Compress 25% 5.3 x 109 meutrons 9.0 x Test Temperature Low Exposure Gamma

ergs/gm(c) in./min 80 in Thermal Insulation High Exposure
Camra 1.3 x 1010
Neutron 2.5 x 10¹⁷
Pull-Rod Speed 0.036
Force to Compress 257 Mat1 Type

		•	janet et er	pour ten q		. exercise of		and the second second	lana arti		- anomon	PCT	li zase z
u	Deflection (1n)	0	0.020	0.031	0.072	0.112	0,160	0.200	0.236	0.330			
Low-Exposure Specimen	Load (Dynamometer)	0	39	180	195	195	195	225	285	285			
W-E	Load (Instron) (1b)		25	120	130	130	130	150	190	190			
			19	7							/- Aphtensona i	James Second	

High	High-Exposure Specimen	ınen
Load (Instron)	Load (Dynamometer) (1b)	Perlection (in)
0	0	0
10	26	0.037
20	9	0.025
	75	C11 0
۴٦	105	0.206
. 24	105	0.283
42	አ አ	0.320
77	175	0.425
	OMESTIC TO	36 JD 01.10
	29-3-08-25	
	1007.2	

Radiation-Cryotemperature Test Data: Material

ഥ

Styrofoam 22

Test Temperature Ambient

Pull-Rod Speed (Avg) 0.05 in./min

Force to Compress 25% (Avg) 28.5 ib

Matl Type Thermal Insulation
Exposure
Gamma Unirrad. (Control)ergs/gm(C)
Neutron

Deflection 0 03 0.04 0.05 0.15 0.20 0,30 0 0.10 25 0.01 (in,) C d Avg Load for Given Deflection 0 2.0 19.0 22.8 24.4 27.5 29 6 45.2 43.4 38.2 (31) Load 0 Load Deflection 0.02 0.03 0.05 0 15 0.20 0.25 0.30 0.04 0.01 (1n.) 0 3 (qr) 25.3 29 8 39 20 0 12 Deflect1@ 0.20 0.30 0.02 0.03 0.04 0.05 0.25 (1n.) 0.01 0 Specimen C) Load (Instron) (1b) ω 29,3 47 20 92 40 0 57 Deflection 0.15 0.10 0.20 0.30 0.02 0.03 0.04 0.05 0.25 0.01 (1n.) (Instron) (1b) .. ? 35.7 31.6 20.5 Load 10 17 22 26 28 0

Radiation-Cryotemperature Test Data: Material F Styrofoam 22

ergs/gm(c) n/cm² in./min Ambient 5.0 x 109 Gamma $5.0 \times 10^\circ$ Neutrons 1.2×10^{15} Full-Rod Speed0.05Force to Compress 25% Test Temperature Low Exposure

uo	ergs/gm(c) n/cm in./min
tl Type Thermal Insulation	gh Exposure Gamma 1.0 x 10^{10} Neutron 2.6 x 10^{17} Pull-Rod Speed 0.05
Mat1	High

,		i cysalinanian	gaterdaniga e				Parties S. James				
u.	Deflection (in)	0	0.02	0.03	0.05	0.07	60.0	0.125			
Low-Exposure Specimen	Load (Dynamometer)										
LOW-EX	Load (Instron) (1b)	0	1	0	2.5	5	10	14.5			

1men	Deflection (1n)		10.0	0.03	0.05	0.07	0.125	, Trough		3917	
High-Exposure Specimen	Load (Dynamoneter)									11.0	
H1gh-	Load (Instron) (1b)	0	Ţ	0	٦,	5.0	10.5		e de la		

Radiation-Cryotemperature Test Data: Material F

Styrofoam 22

ergs/gm(c) n/cm² 0.162 Avg Load for given Defleation (1n) 0.019 0.032 0.202 Def1. 0.052 0.122 0.077 0 Thermal Insulation Load (Dyn.)* Unirradiated (Control) 3,4 ‡ 42 28 4 ‡ 9 0 Seri. (111) Neutron Matl Type Exposure Gamma Load (Dyn.)* (1b) S CM in./min Je. Load (Instron) Spectmen Liquid Nitrogen 0.162 0.032 0 0.052 0.077 0.122 0.202 0.019 Def1. (1n) Test Temperature Liquid N Pull-Rod Speed (Avg) 0 Force to Compress 25% (Avg) Load (Dyn.)* (1b) 9 42 0 16 82 34 4 47 No. Load (Instron) (1b) 0 9 S 8 8 8 25 27

Dynamome ter

0.282

0.350

130

83

0.318

13 gs 133

3

85

23

0.350

0.243

4

32

0.243

4

TABLE A-21

Radiation-Cryotemperature Test Data: Material Styrofoam 22

Liquid Nitrogen Test Temperature

ergs/gm(c) n/cm in./min Low Exposure
Gamma 5.2 x 109
Weutrons 9.0 x 10¹⁴
Full-Rod Speed 0.048
Force to Compress 25%

ton	ergs/gr(c) n/cm ⁻ in./min
Thermal Insulation	1,2 x 1010 2.2 x 1017 Speed 0.041 Compress 2551
1 Type T	Exposure Gamma Neutron Pull-Rod
海む	High

,	confession and parties and an		er pad Makini e	10 to page 10 to 1	and the state of t		Three and a			THE REAL PROPERTY.	MAKE T	
u:	Deflection (in,)	0	0.030	990.0	0.112	0.160	0.205	0.247	0.290		and #8	
Low-Exposure Specimen	Load $(Dynamometer)$ $(1b)$	0	^{ት2}	70	72	72	80	06	717			
Low-Ex	Load (Instron) (1b)	0	18	0ተ	<i>5</i> η	ሪካ	52	57	29			

H1gh-	High-Exposure Specimen	теп
Load (Instron)	Load (Dynamometer)	Derleation (in)
0	0	
6	20	0.019
20	Oή	0.03\ 1
32	52	0.055
ንኝ	አ	0.079
	52	0.104
30	/ተ	0.149
- t	70	4000
57	06	0.287
	The state of	
of a distribution of the second of the secon		

Radiation-Cryotemperature Test Data: Material F Styrofoam 22

in./min Liquid Hydrogen Test Temperature Liquid Hyd Full-Rod Speed (Avg.) 0.0 Force to Compress 25% (Avg.)

Thermal Insulation Matl Type Exposure

ergs/gm(c) Unirradiated Gamma Unit. (Routrol)

		Specimen	nen			Avg Load	for
	No. 1		\ .	No. 2		given Deflestion	lestion
Load (Instron) (1b)	Load (Dyn.)* (1b)	Def1. (1n)	Load (Instron) (1b)	Load (Dyn.)*	Defi. (1n)	Load (Dyn.)*	Daf1. (1n)
C	С	0				0	0
30	45	0.017				1+5	0.017
25	56	0.058	Participation of the Control of the	A.A.Pertia	72 46 24 47	56	0.058
38	57	0.111				57	0.111
39	59	•		en templose		59	0.210
50	75	0.308				75	0.308
			The same of the sa	en en en en			
	·			American (1 mg)	* 82 TOTAL		
			4794		, 1, 2, B		
		2 - 1 - 2 - R					
			200				
			and a second				

* Dynamometer

A-23 TABLE Radiation-Cryotemperature Test Data:

Styrofoam

Material

Hydrogen Liquid Test Temperature

ergs/gm(c) n/cm² in./min lb Force to Compress 109 Pull-Rod Speed 2 × Low Exposure Gamma 5.

Thermal Insulation Hatl Type

ergs/gm(C) 10, in, (min n/cm/ 1010 Force to Compress Camma Neutron Pull-Rod High Exposure

Derleation

Load Load (Dynamometer)

Load (Instron)

High-Exposure Specimen

(47) 0

,											
u	Deflection (in)	0	0.029	0.076	0.126	0.203	0.278	0.319			
Low-Exposure Specimen	Load (Dynamometer) (1b)	0	30	67	06	105	135	158		agra: 18:2:	
Low-E	Load (Instron) (lb)	0	20	4-5	60	70	06	105			

0.155

0.120

42

43 48

61

0.209

61

2

S

0.369

133

108

0.302

59

ን ህ

0.257

0.338

8

78

0.083

20

2

0.051

10

10

0

0

203

Radiation_Cryotemperature Test Data: Mararial G

H-F11m

Test Temperature Full-Rod Speed Breaking Factor	(AVE)	1ent 0 38.5		in,/min ib/in.	Katl Type Exposure Games	_ s	Electrical Unirradiated	Insulation ergs/sm(c)	m(c)
stongacton in (age)				ŝ.		(Control	01)		
		S.	Specimen	A CONTRACTOR OF THE PROPERTY O				Avg Load	Load for
		783.W.	No. 22			ಟ್ಕ್ ತ		er velin	reerr
Load	Def.	100 N	Load	Dec. 1	Load		64	1 100 cm	r co
KTANA OF ELLS	مستعدد زمار (مع) (مع) رمار وسرا		20 (m)	Si Si			(43)		(42,
	0	0		0				0	0
115000 6.	0.10	15	- Pressure II	0.10				13.5	0.10
SECTION TOWN	0.15	50	- El Al Louis	0.17				21.0	0.20
romen to	0.25	25		-0.33				24.5	0.30
JERTINE')	0.50	30		0.55				27.0	0.40
TOWNER	0.75	34.5		1.00	TEN 5.75			29.0	0.50
27811761	1.00	37		1.50	EU LA			32.5	0.75
e nul mi en es	1.25	40		2.20	ುಸಿ ಕರ್ಷ		t.E.mt.	34.5	1.00
ANDERS.	1.45				- 4653	· NIE	N. 2. 1. 3. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	37.0	1.50
a necula		2015			eren i gelen e en en e	R - 18 - 2 - 10 - 1		38.5	1.80
ļ		The same of the sa		The state of the s					į

* Dynamometer

Material G Radiation_Cryotemperature Test Data: H-Film

Matl Type Exposure Garma in./min 1b/in. Ambient Test Temperature
Pull-Rod Speed
Breaking Factor (Avg (4.00-1n. Gage)

ergs/gm(c) Electrical Insulation Neutron

			Spe	ectmen					Aur Tone	
	No. 1						No. 3		Given De	Given Deflection
Load	Load (Dvn.)*	Def1.	Load		Def1.	Load	Load	Def1.	Load	Def1.
(1p)	(10)	(in.)	(1b)	(1b)	(in.)	(1p)	(Jb) (15)	(1n.)	(Instron) (1b)	
q		0	0		0	0		0	С	C
10		0	10		0	10		0.02	10	0.007
20		- 1	20		40.0	20	,	0.12	20	0.07
30		0.24	30		0.26	30		0+0	30	0.27
40		0.70	140		0.52	4.1		1.98	40	1.05
94		1.96	52		2.16				94	2.03
		ecess or			resta					
		estante (c.			A WOLL					
		MEDICAL POPULATION OF THE POPU								
		PENGAFI.			21100					

* Dynamometer

Radiation-Cryotemperature Test Data: Material G H-Film

Test 1 Full-F Breakt	Test Temperature Full-Rod Speed Breaking Factor	(Avg)	Ambient 0.50 39.2		in./min 1b/in.	Matl Ty Exposur Gam	1 Type Electrical osure 8.0 x 109 Neutron 2.2 x 1015	Exposure Gamma 8.0 x 10 ⁹ Neutron 2.2 x 10 ¹⁵ The Electrical Insulation Exposure Gamma 8.0 x 10 ⁹ Regs	ergs/gm(c)	n(c)
). 1	(4.00-in dage)									•
			Sp	Specimen					Avg Load for	for
	No. 1			No. 2			No. 3		diven Le	Tection.
Load	Load	Def1.	Losd	Load	Defi.	Load	1	Def1.	Load	Defi.
Instrom (1b)	(Dyn.)**	(1n.)	(Instron (1b)	(Dyn.)*	(1n.)	(1b)	(Jap.) (Jap.)	(1n.)	(108cron)	(1n.)
C		C	С		0				0	0
10		0.08	10		0.02				10	0.05
20		0.24	20		0.14				20	0.19
30		0.55	30		0.10	· V			30	0.48
39		2.081	39.5		1.694	3 <i>y</i> = 27			39.2	1.90
						7007		214		

* Dynamometer

Material G Radiation-Cryotemperature Test Data: H-Film

ergs/gm(c) Electrical Insulation Unirradiated (Control) Gamma Matl Type Exposure in./min ib/in. Liquid Nitrogen Test Temperature Liquid Full-Rod Speed 0.476
Breaking Factor (Avg) 6 Total Elongation (Avg) (4.00-in, Gage)

	ton	Derl.	(1n.)	ati Nasad	0.092	0.180	0.271	0.358						T	1
Por	flect	A	<u>+</u>	0	0	0	0	0							
Avz Load	Given Deflection	Load	(12)	0	19.5	7,0	09	66							
		1	(1n.)												
	No. 3	1	(<u>(1</u> b)												
	2364	Load	(1p)	3 842				NOT TRUE							
		1	(1n.)	0	0.092	0.181	0.278	0.370				·			
Specimen	No. 2	Load (Dyn.)*	(1p)	0	10	140	68	100							
S		Load (Instron)	(1p)	0		18		1+3					-		
		Def1.	(in.)	0	0.092	0.178	0.265	0.345	olus 905		3603197				
	No. 1	Load Load (Instros (Dyn.)*	(1b)	0	22	40	52	80	ACC ACC	THE PERSON					
		Load (Instro?	(3b)	0	10	20	27	43							Paga A

* Dynamometer

Material G Radiation-Cryotemperature Test Data:

H-Film

Electrical Insulation 5.2 x Matl Type Exposure Neutron Garrina Liquid Nitrogen Test Temperature Liquid Full-Rod Speed 0.450
Eresting Factor (Avg) 66.
\$ Tetal Blongation (Avg) (4.00-in, Gage)

ergs/gm(c)

or	16011091	Defl.	(1n.)	0	0.07	0.12	0.14	0.215									
Avg Load for	ulven Lei.	Load	(3b)	0	25	, O+	50	66.5					•				
	e-keni	Defl.	(1n.)			All to the second	करणच्या हुन त		raumrur)	J-12-12	rede teer.	an o se	CENTER I	. er sa	associativ	arming to	
	No. 3	Load	(32)														
		Load	ing cron)						Towns State (C. S.)								}
	Y CONTRACTOR	Defil.	(1n,)	0	0.092	0.161	0.220		e e e e								
Specimen	No. 2	Load	(ugn.)"	0	20	140	65										
Sp			(Instrong (1b)	0	13	27	43										<u></u>
		Def1.	(1n.)	0	0.053	0.089	0.126	0.166	0.209	्रव्य ा							7
	No. 1	Load	(Dyn.)**	0	30	38	20	63	89								,
		Load	(Instro	0	20	25	33	1,7	1+5								-

* Dynamometer

TABLE A-29

Radiation-Cryotemperature Test Data: Material G

H-Film

in./min ib/in. Liquid Nitrogen Test Temperature Li Full-Rod Speed 0. Breaking Factor (Avg) (4.00-in. Gage)

Matl Type Electrical Insulation
Exposure
Gamma 1.3 x 10¹⁰ ergs/gm(c)
Neutror 5.0 x 10¹⁵ n/cm²

for	Given Deflection	Def1.	(1n.)	0	0.210	0.325										
Avg Load	Given De	Load.	(Jp)	0	50	82										
		H	(1n.)	0	0.200	0.320				117273		2 2 2 2 7 6		225.21	(1) 2 mm	i oraza
	Мо. Э	Load (Dyn;)*	(gr)	0	30	70										
		Load	(Jb)			77	To Provide the	THE TRUE	20150025							
		Defl.	(1n.)	0	0.208	0.352										
Specimen	No. 2	Load (Dyn.)*	(1p)	0	52	85										
ß		Load	(gr)	0	35	57	1882.75%			ance.	עישונה					
		Def1.	(in.)	0		0.302								*******		
	No. 1	Load (Dyn.)*	(10)	0	50	90										
		Load (Instro	(97)	0	. 33	09					:					

* Dynamometer

Radiation-Cryotemperature Test Data: Material G H-Film

Electrical Insulation Matl Type

Mati Type biconitost moutactor	Neutron Unirradiated ergs/gm(C) Neutron (Control)	
Test Temperature Liquid Hydrogen	Full-Rod Speed 0.130 III. Breaking Factor (Avg) 120 Ib/in. \$ Total Elongation (Avg) 0.45 % (4.00-in. Gage)	

for	потават	Deri.	(1n.)	0	0.005	0.0106	0.018						
Avg Load for	arven rei	Load	(12b) (0	30	85	120						
		Defl.	(1n.)										
	No. 3	Load	(Dyn.)" (1b)										
		Load	Instron (1b)		Ĉ.								
		Def1.	(1n.)	0	0.007	0.015	0.028						
ecimen	No. 2	Load	(Dyn.)* (1b)	C	30	83	120						
Spe		Load	(Instron) (1b)	С	20	55	8						C.
		Def1.	(1n.)	ł	0.003	0.005	0.008						
	No. 1	Load	(Dyn.)*	Ċ	30	99	120						
		Load	(Instro- (D) (1b)	C	200	77		3					••

* Dynamometer

Material G Radiation-Cryotemperature Test Data: H-Film

Liquid Hydrogen Test Temperature Liques Pull-Rod Speed O.4 Breaking Factor (Avg) & Total Elongation (Avg) (4.00-in, Gage)

ergs/gm(c) Electrical Insulation 9.0 x 1014 5.2 x 109 Gamma Neutron Matl Type Exposure

Avg Load for	flection	Defl.	(1n.)	0	0.045	001.0	0.150	0.200	0.265					
Avg Load	Given De	Load *	(1b)	0	64	. 62	101	125	160					
		Defl.	(1n.)	0	0.045	760.0	0.138	0.187	0.236	0.288				
	No. 3	Load	(3p) (3p)	0	30	09	06	120	150	180				
		Load	(30)	0	20	9	09	80	100	120				
		Def1.	(1n.)	0	0.045	0.088	0.130	0.170	0.215					
Specimen	No. 2	Load	(1p)	0	105	135	150	165	180					
S		Load	(10)	0	70	90	100	110	120					
		Def1.	(1n.)	0	0.081	0.133	0.171	0.218	0.259	0.293				
	No. 1	Load Load	(115)	0	23	04	09	80	102	120	,			
		Load	(1p) (1p)	0	15	27.	1 -0	53	68	80				

* Dynamometer

Radiation-Cryotemperature Test Data: Material G H-Film

Insulation	ergs/gm(c) n/om ²	ng Load for	Given Deflection	Load * Defl.	(1b) (1n.)	0	30 0.056	53 0.110	75 0.160	98 0.206				
Electrical Insul	1.3 x 10 ¹⁰ 7.8 x 10 ¹⁴	Av	3	Defl. I	(fn.)		and trade.	serios.	and Marie	THE STATE OF THE S	TUNK SI		, weren	200
- 1			No. 3	Load	(36)									
Matl Ty	Exposure Gamma Neutron			Load	(3p)			- Andrew Parker Transport			YET WILLY R		-	
	in./min 1b/in. %			Decl.	(.n.)		2.21.17114	हर ती अन्द्र यह	Sid Exerc	STAR EXPLANA		120 mass 24	- 10 T T T T T T T T T T T T T T T T T T	T-F
gen		Specimen	No. 2	Load	(136)					P - S WARE				
Liquid Hydrog	98	Spé			(Tuetrori (1b)									200
e Liqu	0.480 (Avg) tion (Avg)		PK ******	Def1.	(in.)	0	0.056	0.110	0.160	0.206				2700
Test Temperature	Full-Roc Speed Breaking Factor (Avg. % Total Elongation (A.00-in. Gage)		No. 1	Load	(Jb) (1)	0	30	53	75	98				
Test T	Full-R Breaki % Tota (4.0			pao	(15)		20	35	50	55				

* Dynamometer

Radiation-Cryotemperature Test Data: Material H Mylar - C

Electrical Insulation Unirradiated (Control) Gamma Neutron Matl Type Exposure in./min lb/in. Ambient Full-Rod Speed 0.5
Full-Rod Speed 0.5
Breaking Factor (Avg % Total Elongation (4.00-in. Gage)

ergs/gm(c)

for	lection	Deft.	(1n.)	0	0.05	0.10	0.15	0.25	0.42	0.75	1.00	1.50	1.99			·
Avg Load for	uiven Lei	Load	(10)	0	5.5	10.5	13.2	14.3	14.4	15.2	15.8	16.9	17.6			
		Defl.	(1n.)	·	ecce no	, , , , , , , , , , , , , , , , , , ,		3 X							V13812	
	No. 3	1	(12) (18)													
		Load	(1p)								2.				\$	
		Defl.	(1n.)	0	50° 0	0.10	0.15	0.25	04.0	0.75	1.00	1.50	2.00	2.10		
ecimen	No. 2		(Dyn.)													
Spe		Load	(108 tron)	0	7.0	11.6	13.5	14.2	14.3	15.1	15.7	16.9	17.7	17.7		
		Defl.	(1n.)	ı	0.05	0.10	0.15		1			1.00	1.50	1.89		
	No. 1	4	(Dyn.)													
		Load	(Instrof)	0	0-4	4.6	13.0	14.0	14.41	14.5	15.3	15.9	16.9	17.4		

* Dynamometer

Radiation-Cryotemperature Test Data: Material H Mylar - C

Gamma Matl Type Exposure in./min 1b/in. Ambient Test Temperature Ami Pull-Rod Speed 0. Breaking Factor (Avg) \$ Total Elongation (Av (4.00-in. Gage)

Matl Type Electrical Insulation
Exposure
Gamma 4.92 x 109 ergs/gm(C)
Neutron 1.3 x 1015 n/om2

for	Given Deflection	ł	(1n.)	0	0.02	90.0	0.16	0.26	09.0	1.60	2.56					
Avg Load	Given De	Load	(10)	0	10	20	28	28	30	35	38					
		Defl.	(1n°)	, O	0.02	90.0	0.16	0.26	09.0	1.60	2.56	and the control of				
	No. 3	Load (Dyn.)*	(1p),					,								
		Load	(1p)	0	10	20	28	28	30	35	38					
		l	(1n.)	0	0.02	90.0	0.16	0.26	09.0	1.60	2.56					
Specimen	No. 2	Load (Dyn.)	(11)										,			
S		Load (Instron)	(ar) ,	0	10	20	28	28	30	35	38					
			(1n.)	0	0.02	90.0	0.16	0.26	0.60	1.60	2.56			ALX A		
	No. 1	Load (Dyn.)*	(1b)													
		Load (Instrom	(19)	0	10	20	28	28	30	35	38					

* Dynamometer

Radiation-Cryotemperature Test Data: Material H

Mylar-C

ergs/gm(c) Electrical Insulation 8.0×10^{9} Matl Type Exposure Gamma Neutron 1n./min 1b/in. % Ambient Test Temperature Amble Full-Rod Speed 0.50
Breaking Factor (Avg)
% Total Elongation (Avg)
(4.00-in. Gage)

for	flection	Def1.	(1n.)	0	0.053	0.12	0.25	0.45	0.77	1.73						
Avg Load for Given Deflection		Load	(10) (1p)	0	5	10	13.5	13.5	15	16.8			•			
		Defl.	(1n.)	0	0.03	0.10	0.25	0.45	0.70	1.60	2.75				3.24	
	No. 3	Load	(ar) (ar)													
		Load	Tue Cron	0	r.	10	13.5	13.5	15	17	18.5				-	
	No. 2	Def1.	(1n.)	0	0.03	0.10	0.30	0.50	0.80	06.0						٠
Specimen			(15) (16)													
S	34339 70	Load	(10) (1p)	0	7	10	13.5	13.5	15	15.5		GIT ZONG				
		Defil.	(fa.)	0	10											
	No. 1		(Dyn.)** (1b)													
		Load	(Instro7 (1b)	0	᠘	10	۲,	13.5	15	16.5						

* Dynamometer

Radiation-Cryotemperature Test Data: Material H Mylar-C

Matl Type Electrical Insulation		Gamma Unirradiated ergs/gm(C)	Neutron " n/am²	(Control)
	in./min	1b/1n.	SA.	
Liquid Nitrogen	8 դ դ	86 (20)	(Avg) 5.7	
Test Temperature	Full-Rod Speed	Breaking Factor (A	& Total Blongation	(4.00-1n. Gage)

Avg Load for	flection	f	(in.)	0	0.138	0.227							
Avg Load	Given De	Load	(3b)	0	56	86							
		1	(1n.)										
	No. 3		(ar) (ar)										
		Load	(1b)										
	No. 2	Defl.	(1n.)				٠	-					
Spec1men		Load	j										
		Load	~						Time and				
		Def1.	(1n.)	0	0.138	0.227	 Care I					alensu.	
	No. 1	Load	_	0	56	98							
		Load	(10)	0	. 35	70							

* Dynamometer

Radiation-Cryotemperature Test Data: Material H Mylar-C

ergs/gm(c) Electrical Insulation 5.3 x 109 1.0 x 1015 Matl Type
Exposure
Gamma 5. Liquid Nitrogen Test Temperature Liquic Full-Rod Speed 0. Breatter Factor (Avg) (4...-in. Gage)

}	-	_	-	WITH THE PERSON	MANUTE.	-												
000	Avg Load for Given Deflection		(1n.)	1	0.073	0.143	0.4.0											
Ave Tond			(Dyn. (15)	0	7.5	0							,					
		Def1.	(1n.)												7.41			P284
	No. 3	Load	(2p) (2b)												1 4			
		Load	(1b)						•									
		Def1.	(1n.)															J.
ecimen	No. 2	Load																
Spec		Load	(10)										Paralle	-		Take Ingred		
			(1n.)	0	0.73	0.143	1002	200	V,0,0	roestas	31.00	1877			nes			
	No. 1	Load (Dvn.)*	(1p)	O ₁	7.5	18												
		Load	(1p)	0	5	12	T William C											

* Dynamometer

Material H Radiation-Cryotemperature Test Data: Mylar-C

1010 Gamma Neutron Matl Type Exposure Liquid Nitrogen Test Temperature
Full-Rod Speed
Breaking Factor (Avg)
% Total Rlongation (Avg)
(4.00-in. Gage)

ergs/gm(c) Electrical Insulation

Avg Load for	flection	1	(1n.)	0	0.037	0.100	0.140	0.205	0.278						
Avg Load	Given De	Load *	(1b)	0	17.7	28.0	34.0	47.0	58.5						
		Defl.	(1n.)												
	No. 3	Load													
		Load	(12)	(a) # 324 (2											
		Def1.	(1n.)	0	0.037	0.081	0.140	0.205	J-11/1 8		(40)	_1#-320		181-5	
ectmen	No. 2	Load	(q:)	0	30	38	45	09							
Sp		Load	(10)	0	20	25	30	0+1		c ha a					, lacren
		Def1.	(1n.)	0	0.097	0.193	0.282	0.352						A E AST	
	No. 1	Load	(15)	0	15	33	7+8	57							
		Load	(1p) (1p)	0	10	22	32	38					eran Per		

* Dynamometer

TABLE A-39

Material H Radiation-Cryotemperature Test Data:

Mylar-C

Neutron Matl Type Exposure Gamma in./min 1b/in. % Liquid Hydrogen Test Temperature Lighters Full-Rod Speed
Breaking Factor (Avg) (4.00-in. Gage)

ergs/gm(c) Electrical Insulation Unirradiated

(Control)

Avg Load for Given Deflection (1n.) Def1. 0.200 0.224 0.288 0.100 Load * Dyn. (15) 64.3 26.7 55.3 97.7 0 960.0 0.326 0.200 (1n°.) Defl. 0 Load (Dyn.)* 105 ٠ و 12 30 0 Load (Instron) 20 70 \circ ∞ 0.315 0.095 0.170 Defl (1n. 0 Load (Dyn.) No. 20 Specimen 7, 138 86 0 Load (Instron) (1b) 65 12 30 0 0.224 0.099 0.173 (in.) Defl. Load Load (1b) No. 1 7,5 68 9 d Load (Instro: (1b) 30 45 9 d

* Dynamometer

Radiation-Cryotemperature Test Data: Material H

Mylar

Neutron Matl Type Exposure Gammed in./min 1b/in. % Liquid Hydrogen Test Temperature Light Full-Rod Speed O. Breaking Factor (Avg) (4.00-1n. Gage)

Exposure
Gamma 5.3 x 109
Neutron 1.0 x 10¹⁵
n/em²

or	ection	Defl.	(1n.)	0	0.028	0.052	0.079	0.100	0.128	0.154						
Avg Load f	Avg Load for Given Defleation		(1b)	0	30	60	75	90	105	120						
	A CEL	Defl.	(1n.)			**************************************	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		v pomer	LE TILLE	THE STATE OF	Leady Week		3707 SX.	77200 BK	erez e
	No. 3	1	(Jb) (15)													
		peor	(105 cron)	7887337	48-711											
		Defl.	(1n.)				Agreed 4									
ecimen		Load	(10) (10)													
Spe		Load	(108 cron)		m1201251							X = 1731 5				
		Defi.	(in.)	0	0.028	0.052			(0.154		A 525624 ST				
	No. 1	Load	(15) (15)	0	30	09	75	96	105	120						
		Load	(Instro)	0	. 20	04	50	09	70	80						

* Dynamometer

A-41 TABLE

Material Data: Radiation-Cryotemperature Test Conolon 506

.0198 .0263 (in.) 0232 .0295 .0328 0600 0164 Dafl. .0032 .0355 ,0066 erga/gm(C) Given Deflection Defl. Laminate Average Load (in.) 010. .108 .020 030 0,40 .060 .080 .100 .050 .070 060. 11200 26560 37100 14080 19360 22720 30710 33900 1265 40500 43200 6080 Load 1b/ 1n2 Structural C Gamma Unirradiated Ambien Load 1350 (1p) [Control] 106C 1160 350 190 0+7+ 710 830 605 096 for C .0053 .0086 .0026 .03343 Def1 (in.) (Rod) (Exts ,0156 .0262 0297 .0362 0120 .0228 .0190 Neutron Test Temp Exposure Type (in.) Defl. .008 .016 .079 岀 .026 .047 .058 690. .090 .110 .036 .101 No. Mati 0 1260 1360 1030 1140 130 270 400 780 006 Load 530 650 (1p)0 in./min (in.) .0248 .0138 .0012 ,006h .0174 0316 .0348 Defl. .0034 .0280 .0100 .0210 (Rod)|(Exts) ps1 0 98.98 (1n.) Defl. .010 .020 .075 ±00. .030 040. ±90° .085 960. .105 .053 No. 0 43,200 1310 Load 1090 1210 (1p) 190 330 7460 900 710 850 980 2 2-1 Specimen 0 .0073 1,00. (in) .0152 .0290 .0336 .0358 Def1 (Exts. .001 .0116 .0186 .0220 .0256 Pull-Rod Speed (Avg) 0.05 Ultimate Tensile Strength (Avg) % Total Elongation Gage) 0 Gage) Defl. (Rod) .067 .035 .056 .014 (1n.) .005 .024 940. .077 .088 102 .108 No. Extensometer (2-in. 0 (5.25-1n. 110d 1210 300 1370 180 Load (1P) 320 450 580 710 840 970 0 (1n.) .0032 .0062 .0014 .0092 .0164 ,0295 .0264 .0232 .0129 0323 Defl. .0198 Exts Pull-Rod 0 010 .028 400. 010 070 Def1. 039 050 090 089 (Rod) (in.) 080 860 80. 0 Load (1p) 1250 1050 1150 180 300 440 570 690 810 940 80 0

.0354

107

1360

Radiation-Cryotemperature Test Data

Conolon 506

Н Material

.0088 .0220 .0264 .0044 .0176 .0308 .0352 .0380 Defl. Defl. (Rod)(Exts) .0132 (1n.) erga/gm(c) n/om² Average Load Given Deflection Laminate (1n.) 715 0,40 .067 .080 .093 .107 .013 .027 .053 25770 21350 12230 30240 1087 34770 1218 38950 1308 41850 16700 6655 Load Load Structural 16/ 10/ 1.05 x 10¹⁰ C Ambient (1p)Nautron 2.5 x 10 208 382 522 667 805 546 for C (in. 3 (Rod)(Exts Defl. Defl Matl Type Test Temp Exposure Gamma (in.) 4 No. Load (1p) in./min .0088 (1n.) 4400. .0132 .0264 0352 .0396 Defl. Defl. .0176 .0220 .0308 00+0 (Rod)(Exts)ps1 0 P8 B8 (1n.) 121 No. 1045 1295 1310 Load 1170 41850 (1p) 205 370 510 645 775 910 2.2 Specimen C Defl, 4400. .0308 .0380 .0088 .0132 .0176 .0220 .0264 (Exts. (in.) .0352 0.05 Pull-Rod Speed (Avg) 0.0° Ultimate Tensile Strength (Avg) % Total Elongation Pull-Rod (5.25-in. Gage) Extensometer (2-in. Gage) C Defl. (Rod) (1n.) .115 No. 1259 135d 1120 Load 395 975 220 685 540 830 (1p)0 (1n.) ,0264 0352 +1.400 ,0088 0132 .0176 0220 0308 Def1. .0360 Exts.) 0 (tn.) 109 Load Defl. (Rod) No. 1265 (1p) 1095 1230 380 515 810 950 200 670 0

Radiation-Cryotemperature Test Data: Material

Structural Laminate 1010 Ambient Matl Type Test Temp Exposure Neutron Gamma in./min ps1 98.98 40160 2.1 0.05 Ultimate Tensile Strength (Avg) & Total Elongation Pull-Rod (5.25-in. Gage) (2-1n. Pull-Rod Speed (Avg Extensometer

ergs/gm(C)

	lon	Defl. (Exts.)	(1n.)	0	1 400.	.0088	.0132	.0176	.0220	.0264	.0308	0480	.0358				
• Load	flect	Defl. (Rod)	(1n.)	0	.013	.027	040.	.053	290.	.080	.093	103	.108				
Average	Given Deflection	Load 1b/	102	0	7110	12700	17500	21920	26350	30780	35200	38220	10160				
7	for G	Load	(1b)	0	222	397	5,+7	685	823	962	1100	1195	1255				
		Defl. Defl.	(in.)					mar. 4		W. 102 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0	3,000		M	Amier)	27.07		
	No. 4	Defl.	(in.)														
		Load	(1b)										·				
		Defl. Defl. (Rod)(Exts.)	(in.) (in.)	0	₩₩00.	.0088	.0132	.0176	.0220	.0264	.0308	.0320					
	No. 3	Defl. (Rod)	(in.)									.097					
men		Load	(1p)	0	240	00 1 γ	550	690	825	096	1100	1140					
Specimen		Defl. (Exts.	(1n.)	0	.0044	.0088	.0132	.0176	.0220	.0264	.0308	.0352	.0393	.0396			
	No. 2	Defl. (Rod)	(1n.)											.120			
		Load	(TP)	0	200	380	530	675	810	950	1090	1225	1350	1355			-
		Defl. Defl. (Rod) (Exts)	(in.)	0	+1+100•	.0088	.0132	.0176	.0220	.0264	.0308	.0350	.0352				
	No. 1		(in.)										.108				
	-	Load	(1P)	0	225	410	560	690	835	975	1110	1255	1270				

Radiation-Cryotemperature Test Data: Material I

		(o)		no	Defl. Exts.)	(1n.)	0	.010	.020	.030	040.	.050	.060	.070							
	Laminate rogen	erga/gm(c) n/om ²	Load	flecti	Defl.	(1n.)	0	.030	.061	.091	.121	.152	.182	-214							
	1+1		Verage	Given Deflection	Load 1b/	$1n^2$	0	13540	26640	39580	51900	62950	70300	76000							
	Structural Liquid Ni	irradiated " Control)	V.	for Gi	Load	(1p)	0	423	833	1237	1623	1967	2198	2377			6775-6	0.3100	ALIX	737	
	9 6	Ini (C)		B ♥/H♥	Defl. Defl. (Rod) (Exts)	(1n.															
	Matl Type Test Temp	Exposure Gamma I		No. 4	Defl. (Rod)	(in.)					120,000	uni entre e									emails.
1		X			Load	(TP)															
	in./min psi				Defl. (Exts.)	(in.)		213001									.078				
77	# D	P5 P5		No. 3	Defl. Defl. (Rod)(Exts.)	(1n.)	0	.028	.073	.118	.150	.172	.200	.219	.225	.232	.237				
	76000	7.7	nen		Load	(1p)	0	260	850	1450	1780	1950	2000	2150	2200	2250	2260				
I	O14 (Avg)		Specimen		Defl.	(in.)				, where	***********		part ners	.063	**************************************						
	<u> </u>	n. Gage)		No. 2	Defl. (Rod)	(1n.)	0	010.	640.	+60.	.130	.153	.172	.192							
	(Avg) e Stre	lon .25-1n r (2-1			Load	(1p)	0	190	820	1400	1850	2050	2250	2300							
	Speed (Avg) Tensile Strength	longat Rod (5 sometes			Defl. (Exts.)	(in.)	71.73.33.33.33.33.33.33.33.33.33.33.33.33.										.070				
	Pull-Rod S Ultimate 7	% Total Elongation Pull-Rod (5.25-in. Ga Extensometer (2-in. C		No. 1	•~	(in.)	0	.012	.018	.042	.083	.123	.131	.155	.163	.185	.213				
	Pull Ulti	<i>K</i> E		Z	Load Defl	(11)	0	09	195	610	1160	1640	1800	2020	2120	2370	2570				
			-		 		<u> </u>	22	24			****	·								

Radiation_Cryotemperature Test Data:

Conolon 506

/m1n in./

76500 Pull-Rod Speed (Avg) 0.011
Ultimate Tensile Strength (Avg)
% Total Elongation
Pull-Rod (5.25-in. Gage)
Extensometer (2-in. Gage)

4.0

Material

Structural Laminate

Liquid Nitrogen 1010 × Matl Type Test Temp Exposure Gamma

ergs/gm(c) 28.28

	on	Defl. Exts.)	(1n.)	0	.010	.020	.030	040.	.050	690.				Andread to control				
P Load	sflecti	Defl. Defl. (Rod)(Exts.)	(in.)	0	.030	.061	.091	.121	.152	.209	1-4-7 - Albary 100-							
Average	Given Deflection	Load	102	0	16220	32760	06424	59160	09469	76500								
	for G	Load	(1p)	0	507	1023	1483	1850	2170	2392								
		Defl. Defl. (Rod) (Exts.)	(in.) (in.)		Parity is into	() (A - 1)	THE PARTY	arrante rej	ALCOHOL: SAL			***********	ac yang	ADZ (MA	ike 1994	154910		
	No. 4	Defl. (Rod)	(in.)															
		Load	(1p)															
		Defl. Defl. (Rod)(Exts.)	(1n.) (1n.)										.078					
	No. 3	Defl. (Rod)	(1n.)	0	.019	.041	.085	.114	.145	.165	.211	.232	.236					
cimen		Load	(1b)	0	300	920	1550	1950	2250	2350	2475	2500	2575				1	
Speci		Defl.	(1n.)								Name Palay	.068					e Sant in	at Xxx.ptr
	No. 2	Defl (Rod)		0	.018	040.	.076	.112	.141	.180	.188	.205						
		Load	(1b)	0	160	500	1200	1780	1950	2300	2450	2550	·		-			
		Defl. Defl. (Rod) (Exts)	(1n.)									.062						
	No. 1	Load Defl.		0	.007	.024	.057	.097	.129	.143	.158	.187						
		Load	(1p)	0	115	014	900	1410	1800	2000	2150	2050						

Radiation-Cryotemperature Test Data: Conolon 506

Conolon

Material I

erga/gm(C) Structural Laminata Liquid Mitrogen 5.0×10^{10} Gamma 5. Matl Type Test Temp Exposure in./min ps1 9898 .014 Pull-Rod Speed (Avg) .01
Ultimate Tensile Strength (Avg)
% Total Elongation
Pull-Rod (5.25-in. Gage)
Extensometer (2-in. Gage)

Γ		. ~	~7	1	1						_T	T	 -						~~~
	ion	Defl Exts	(4n.	0	.010	.020	.030	0,40.	.050	.076						-			
Average Load	flect	Defl. (Rod)	(1n.)	0	.030	190.	.091	.121	.152	.230									
verage	ven De	erd	4n2	0	23870	36450	17400	57100	65140	78670						-	******	2 may 23 7 m and	
A	for Gi	Load	(1p)	0	715	1140	1480	1785	2037	2490									
	क्षा) के अके र	Defl Exts	(in.) (in.	A STEEL SECTION	ù rae 4r-1 di	तम प्रस्तुः ।	(A) 473	Pagent of	रा स्थ्यूर	TAUNT DA	an Carren	TERMAN	ररका ग्रह	THE STATE OF	37 43 47	4 2 2 3 3 2 7 4	W. J. Ber	u cau c	
	No. 4	Defl. Defl. (Rod)(Exts.)	(in.)																-
		Load	(1b)											46.00		23.25			
		Defl. Defl. (Rod)(Exts.)	(in.) (in.)																
	No. 3	Defl. (Rod)	(in.)																
1 men			(1b)																
Speci	N. KING	Defl.	(in.)						.071	anger manger.				KIN ELD					
	No. 2	Defl (Rod)	(1b) (4n.)	0	.025	190.	₹60•	.138	,214										
	Voje na r	Load	(1p)	0	840	1290	1590	1990	2190					i sympos			hr men.	. Resultati	
		Defl. (Exts)	(in.)				-							.081					
	No. 1	Load Defl. Defl. (Rod) Exts)	(1b) (1n.) (1n.)	0	.025		.112	.147	.165	.182	.193	.204		.246					
	1	Load	(1p)	0	044	1040	0491	1990	2190	2390	2470	2490	2660	2790				-	

TABLE A-47

Radiation-Cryotemperature Test Data: Material I

Conolon 506

Defl. 010. .020 030 040. .050 .078 erga/gm(c) Average Load for Given Deflection Defl. (Rod) (in.) .061 .030 160. .152 Structural Laminate Liquid Hydrogen 121 .207 1295 41450 28630 12870 52150 00009 66240 Load Load 1b) 1b/ 2ni (11) Unirradiated 0 1630 2070 1875 (Control 402 895 0 Defl. Defl (in, (Rod)(Exts)Gamma U Matl Type Test Temp Exposure (in.) No. Load (1p)in./min psi (1n.) (1n.) Def1. (Rod) (Exts.) 98,98 Def1. So. Load (JP) 66240 3.9 Specimen (1n.) .075 Defl (Exts. .033 Pull-Rod Speed (Avg) .033 Ultimate Tensile Strength (Avg). % Total Elongation Pull-Rod (5.25-in. Gage) Extensometer (2-in. Gage) Defl. (Rod) (1n.) .030 .228 .067 .132 .155 .182 .200 113 S No. 0 1020 1600 1940 2110 2240 2200 1740 Load 370 (1p) (1n.) Def1. (Exts) .061 Load | Defl. (Rod) (in) .152 .022 ·064 117 .185 No. 1940 1820 (1P) 157 300 046

Radiation-Cryotemperature Test Data: Material I

•	,- ;-				r							r			
(c)		lon	Defl.	(in.)	0	.010	.020	.030	0,0	.050	090.	.072			
nogen oerga/gm	Load	flect	Defl. (Rod)	(in.)	0	.030	.061	160.	.121	.152	.182	.219			
101 101	Ayerage Load	Given De	Load 1b/	1n2	0	34570	52600	66770	75500	82100	87900	92750			
Matl Type Structura Test Temp Liquid Exposure Gamma 3.0 x Neutron 1.6 x	Ų.	for Gi		(1b) 1n ²	0	1080	1645	2085	2360	2565	2745	2900		7	new!
o Str.			Defl. Defl. (Rod)(Exts.)	(in.) (in.)			***************************************		72 mar 14 m q						
Matl Type Test Temp Exposure Gamma Neutron		No. 4	Defl. (Rod)	(in.)				(alistoskuura,	a reason we						
			Load	(TP)											
in. psi			Defl.	(in.)		B									
9898 Ä 🛱		No. 3	Defl. Defl. (Rod)	(in.) (in.)											
92750 4.2 3.6	nen	I	Load	(1p)											
+11111	Specimen		Defi	(in.)		12)		OTTO MOV	no din amera.	APPLINES:	47 07 0 17.	.071	ARIUF RI		×
(Avg) .05 ¹ e Strength (Avg) lon .25-1n. Gage) r (2-1n. Gage)		No. 2	Defl (Rod)	-	0	.028	•	.112	147	.173	.196	.215			
(Avg) e Stre lon .25-1n r (2-1			Load	(1p)	0	1100	1775	2250	2500	2600	2750	2850	and the second		
ed sill gat (5			Defl. Exts)								.073				
Pull-Rod Spe Ultimate Ten % Total Elon Pull-Rod Extensom		No. 1	Load Defl. Defl. (Rod) (Exts.	(1b) (1n.)	0	490.	660.	.143	.170	.195	.222				
M TILL			Load	(11)	0	1560	2170	2550	2750	2850	2950				

Radiation-Cryotemperature Test Data:
Paraplex P-43

Material in./mi psi 9898 Pull-Rod Speed (Avg) .05 Ultimate Tensile Strength (Avg) % Total Elongation Pull-Rod (5.25-in. Gage) Extensometer (2-in. Gage)

Test Temp Amb Exposure Gamma Unir Neutron	Structural Laminate Ambient Unirradiated ergs/gm(C)
OC)	Control)

			ı													
			f			Speci	cimen							Average	Fload	
		No. 1			No. 2			No. 3			No. 4		for G	Given Deflection	eflect	ton
	Load	Defl.	Defl. Defl.	Load	Defl.	Defl Defl	Load	Defl.	Defl. Defl.	Load	Defl. Defl	Defi	Load	Load Load	Def1.	. Defl.
	(11)	(tn.)	(10.)	(1P)	(1n.)	(1n.)	(1b)	(1n.)		(1b)	(1n.)	(koa)(Exts. (in.) (in.	(1b) 1b2	1b2 1n2	(Rod) (1n.)	(Exts.)
	0	0	0	0	0	0	0	0	0				C	C	C	
22	138	.011	.0038	120	.011	.0028	95	800.	.0027				017	3500	5	200
a	252	.021	.0070	212	.021	.0068	190	.017	.0054			*****	220	7040	020	0065
	375	.031	.0104	315	.030	.0100	300	.026	4800.			S MESSA	335	10710	030	7000
	490	.041	.0136	430	.042	.0138	420	.036	.0118			3000	450	14400	040	0130
	610	.051	.0170	530	.053	.0176	530	940.	.0152			I PS TOPE	550	17600	0.40	0168
	719	.062	.0204	625	.065	.0216	049	.057	.0187			546,000	625	20000	060	0108
	810	.071	.0236	720	.078	.0258	750	.067	.0223				1	22870	070	0237
	874	.082	.0270	800	.091	.0300	850	.078	.0258			es risker		06030	080	19CO
	920	.091	.0300			er Alexandre	950	.089	.0295			d-Region	890	28480	060	020
									A SEASO			September 1				

												in town				
ž						3						ere		_		Mary W

Radiation-Cryotemperature Test Data: Material

Paraplex P-43

Structural Laminate 1.0×10^{10} Ambient Gamma 1 Matl Type Test Temp Exposure in./min psi 9898 2.0 Pull-Rod Speed (Avg) .0° Ultimate Tensile Strength (Avg) & Total Elongation Pull-Rod (5.25-in. Gage) Extensometer (2-in. Gage)

erga/gm(C)

	on	Defl. Exts.)	(1n.)	0	η ₁ 00°	.0088	.0132	.0176	.0220	.0264	.0308	.0335	.0350						
Load	flection	Defl. Defl. (Rod) (Exts.)	(1n.)	0	.013	.027	040.	.053	.067	.080	.093	101.	901.						
lverage	Given Def		1n2	0	5790	10370	14400	18230	21970	25920	29110	31020	32180						
7	for Gi	1	(1P)	0	181	324	7+50	570	989	801	016	026	1006						
		Defl. Defl. (Rod)	(in.) (in.	0	1,400.	.0088	.0132	.0176	.0220	.0264	.0308	.0352	.0360		20.30*44	205		WHO COLOR	
	No. 4	Defl. (Rod)	(in.)										.109						
		Load	(1b)	0	190	335	09ቲ	580	069	810	915	1020	1030						
		Defl. Defl. (Rod)(Exts.)	(1n.)	0	4400.	.0088	.0132	.0176	.0220	.0264	.0308	.0340							
	No. 3	Defl. (Rod)	(in.)									.103							
men		Load	(1b)	0	170	310	04,4	560	675	790	006	970							
Specimen		Defl.	(1n.)	0	.004t	.0088	.0132	.0176	.0220	.0264	.0308	.0340		200					
	No. 2		i i									.103							
		Load	(1b) (1n.)	0	195	340	470	590	710	825	935	1015							
		Defl. Defl. (Rod) Exts)	(1n.)	0	4400.	.0088	.0132	.0176	.0220	.0264	.0308	.0352	.0360				·		
	No. 1		(1b) (fn.)										.109						
		Load	(1p)	0	170	310	1+30	550	670	780	890	990	1010	\ \					

TABLE A-51

Radiation-Cryotemperature Test Data: Naterial

2.0 0.05 Pull-Rod Speed (Avg) 0.0° Ultimate Tensile Strength (Avg) & Total Elongation Pull-Rod (5.25-in. Gage) Extensometer (2-in. Gage)

Laminate			ergs/gm(c)	pmo/u
Structural	Ambient	С.	6.0×10^{10}	nl.7 x 1010
Matl Type	Test Temp	Exposure	Gamma	Neutro
in./min	psi	İ	ps.	ઝ્ટ

	lon	Defl. Exts.)	(1n.)	0	+1100.	.0088	.0132	.0176	.0220	.0264	.0308	.0340				
Load	aflecti	Defl. Defl. (Rod)(Exts.)	(1n.)	0	.013	.027	040.	.053	.067	.080	.093	.103			 	
Average	Given Deflection	Load 1b/	102	0	0445	9860	13850	17700	21380	25040	28560	30830				
	for G	Load	(TP)	0	170	308	433	553	668	783	893	496				
		Defl (Exts)	(1n.)	0	††00°	.0088	.0132	.0176	.0220	.0264	.0308	.0350				
	No. 4	Defl. Defl. (Rod)(Exts.)	(in.)									901•				
		Load	(1P)	0	165	300	420	540	655	770	880	985				
		Defl. Defl. (Rod)(Exts.)	(1n.)	0	4400.	.0088	.0132	.0176	.0220	.0264	.0308	0460.				
	No. 3	Defl. (Rod)	(in.)									.103				
ecimen		Load	(1b)	0	180	320	544	565	685	800	910	975				
Speci		Defl. (Exts.	(in.)	0	1,1 00°	.0088	.0132	.0176	.0220	.0264	.0308	.0340				
	No. 2	Defl. (Rod)	(1n.)									.103				
			(1p)	0	175	315	1+1+5	565	680	795	910	975			,	
		Defl. (Exts)	(1n.)	0	††00°	.0088	.0132	.0176	.0220	.0264	.0308	.0330				
	No. 1	Load Defl.	(fn.)					`\				.100				
	-	Load	(1b)	0	160	295	420	540	650	765	870	920				

A-52 TABLE

Test Data: P-43 Radiation-Cryotemperature

Paraplex

Material

Exts。) Defl. Defl. (1n.) 010. .020 .030 0,00 0,48 .057 ergs/gm(C) Average Load Glven Deflection Structural Laminate (Rod) (in.) .172 .030 145 190. .091 .121 0 Liguid Nitrogen 13670 34000 24840 41160 20494 1515 48480 Load Load 15/ in/ Unirradiated 0 (Control) 1062 1287 (1p) 1450 777 427 for (Rod) (Exts (1n.) (1n. Defl. Defl Nautron Matl Type_ Test Temp Exposure Gamma 4 No. Load (1p) /mīn/ (1n.) Defl. (Rod) (Exts.) .053 in./ 86.88 (1n.) Defl. .015 .138 .162 .086 .043 No. 0 08484 1085 1535 Load 1385 (1p) 250 645 Specimen C (in.) .012 (Exts. Defl 640. Pull-Rod Speed (Avg) .012 Ultimate Tensile Strength (Avg) % Total Elongation Pull-Rod (5.25-in. Gage) Extensometer (2-in. Gage) (Rod) .148 Defl. (1n.) 900. .067 901. .031 N No. 0 1180 146d 400 140 820 Load (1P) 0 (in.) Def1. Exts.) .068 (Rod) Load | Defl. (tn.) .207 .165 .008 .180 195 .026 .050 .077 .105 .134 150 No. C 1500 1490 1150 1550 1550 1420 1380 (1p)150 360 006 615 0

Radiation-Cryotemperature Test Data:

P-43 Paraplex

٦ Material

in./min psi (Avg) Pull-Rod Speed (Avg) OH(Ultimate Tensile Strength (Avg) Total Elongation
Pull-Rod (5.25-in. Gage)
Extensometer (2-in. Gage)

Structural Laminate

trogen

Matl Type Test Temp Exposure

erga/gm(C) Gamma

9696

2.7

	ton	Defl. Defl. (Rod)(Exts.)	(1n.)	0	.010	.020	030	.037	047								
Load Dad	Given Deflection	Defl.	(1n.)	0	.030	190.	1.00	•									
Averag	iven D	Load	1n2	0	1437	24480	34720	1									
	Fi	Load	(1b)	0	644	765	1085	1270	1436								
		Def1	(1n.)						038	**************************************		P 08/9, 1/2	्रीयसम्बद्धाः 	19.00	A APRILL		
	No. 4	Defl. Defl. L (Rod)(Exts)	(in.)	0	.020	.039	.062	980•	1174								
		Load	(1b)	× 0	300	520	750	1000	1220								
		Defl. Defl. (Rod)(Exts.)	(in.) (in.)							.068							
	No. 3	Defl. (Rod)	(1n.)	0	.005	.028	.070	.120	.157	.206							
ecimen		Load	(1b)	0	85	1400	920	1400	1700	1775							
Speci		Defl.	(1n.)					38.44		.037							
	No. 2			0	.010	.025	.043	490.	.089	.111							
		Load	(15)	0	160	340	560	810	1060	1260							
		Defl.	(in.)					940.								:	
	No. 1	Defl. (Rod)	(1b) (1n.)	0	.012	7+0.	.095	.138									
		Load	(1b)	0	260	700	1150	1490						ŕ		(/

Radiation-Cryotemperature Test Data:

Paraplex P-43

Material

Matl Type Test Temp Exposure in./min psi 9696 2.9 960. Pull-Rod Speed (Avg) .09 Ultimate Tensile Strength (Avg) % Total Elongation Pull-Rod (5.25-in. Gage) Extensometer (2-in. Gage)

ergs/gm(c) Structural Laminate Liquid Nitrogen Gamma 5.0 x 1010 Neutron 4.8 x 1010

	uo.	Defl. (Exts.) (in.)	0	.010	.020	030	035	.051								
Load	sflecti	Defl. (Rod)(0	.030	190.	.091	.106	.154	Laut Raine							
Average	Given Deflection	Load 1b/ in2	0	32300	1283 41060	1468 46950	1540 49270	1679 53650								
	for G	Load Load $\frac{1b}{1n^2}$	0	1010		1468	1540	1679								
		Defl. Defl. (Rod)(Exts. (in.) (in.)					.035			310.		2-44-4 E 2-4-4-4	S-17-4-	7,1145	3149,30*	2.52.5
	No. 4	Defl. Defl. (Rod)(Exts. (in.) (in.)	0	.011	.045	.075	105									
		Load (1b)	0	550	910	1150	1370									
		Defl. Defl. Load (Rod)(Exts.) (in.) (in.)				.056										
	No. 3	Defl. (Rod)	0	.031	.081	.170			,							
ecimen		Load (1b)	0	1170	1470	1530										
Speci		Defl. (Exts.) (in.)				.052										
	No. 2	Load Defl. Def (Rod) (Ext (1b) (in.) (in.	0	.023	.070	.156										
		Load (1b)	0	1100	1440	1670										
		Defl. (Exts.) (1n.)					.061									
	No. 1	Defl. (Rod) (in.)	0	.029	.072	.121	.184									
		Load (1b)	0	910	1440	1900	2145									

Radiation-Cryotemperature Test Data: Material Paraplex P-43

erga/gm(c) Structural Laminate Liquid Hydrogen Unirradiated (Control Gamma Un Neutron Matl Type Test Temp Exposure /m1n in./ 86.88 2.6 Pull-Rod Speed (Avg) .057 Ultimate Tensile Strength (Avg) & Total Elongation Pull-Rod (5.25-in. Gage) Extensometer (2-in. Gage)

						Sport	oo t mon									
		NO.		2000	ı						8			Average Load	e Load	
		7			NO. Z			No. 3			No. 4		ror G	ven D	eflect	lon
	Load	Defl. (Rod)	Defl.	Load	Defl. Defl. (Rod)	Defl.	Load	Defl.	Defl. Defl.	Load	Defl.	Def1		75	Defl.	Defl.
	(1b)	(in.)	(in.)	(11)	(lb) (fn.)	(1n.)	(1b)	(1n.)	(1n.)	(1p)	(1n.) (1n.)	(in.	(1P)	1b/ in2	(Rod)(Exts.) (in.) (in.)	(Exts.)
	0	0		0	0		0	0					0	0	C	
2	220	.036		130	.026		200	030					000	2,(12		
35	810	.085		430	.054		470	050				(DECTANDA	176	0140	.030	010
	1290	.142	240.	620	690	-	780	075				KW CANA	230	00277	190	.020
				026	100	******	1060	700				TEBI () PINC	203		.091	030
				1010	1	-	7.000	OOT.				ance ers	1200	38400	121	040
				0727	477.	.043	1320	·133	+1+0		-	resuppe	1273	40760	72.	ν. γ.
											-	STEEL THE ST				
												Dette				
						1980			er laus			SECRET FOR				
d									S. SELECTION OF THE PARTY OF TH			FECON		******		
												MODEL ST				
				****		HE STA	•			a medical		C THE				
				- 3 · · · · · · ·								**************************************				
				,					e nac			100 951				
												ROSS		~	TOU BY N	r Tabl _e salver
							Page 1		DE SERVE							
									h							
3								di-				(2)			- 1-2-7	

Material Radiation-Cryotemperature Test Data: Paraplex P-43 in./min psi 5898 2.5 Pull-Rod Speed (Avg)
Ultimate Tensile Strength (Avg)
% Total Elongation
Pull-Rod (5.25-in. Gage)
Extensometer (2-in. Gage)

Matl Type Structural Laminate Test Temp Liquid Hydrogen Exposure Gamma 1.3 x 10 ¹⁰ ergs/gm(c)			/U CTUL * 11 L	Neutron 1.4 x 1015 n/cm²	Neutron 1.4 x 1015 n/cm²	/u < 101 x 4.11	/u < 101 x 4.11
--	--	--	----------------	--------------------------	--------------------------	-----------------	-----------------

	lon	. Defl.)(Exts.)	(1n.)	0	.010	.020	.030	t ₁ 0.								
ge Load	eflect	Defl. (Rod)	(1n.)	0	.030	.061	.091	.133								
Ø	Given De	Load 1b/	in2	0	14500	26180	35650	42540							و باردان الدون	
	for		(1p)	0	453	818	1115	1333								
	erseinae	Defl. Defl. (Rod)(Exts.	(in.)			galog (TEU	, merce		¥ 1		.043					
	No. 4	Defl. (Rod)	(in.)	0	.015	.042	990.	.086	.103	.120	.129					
colored to the second			(1p)	0	50	300	600	800	950	1100	1150					
	3 (4800 tal)	Defl. Exts.)	(1n.) (1n.)					.035					aca inc			
,	No. 3	Defl. Defl. (Rod)(Exts.)	(1n.)	0	.050	.070	.087	.105								
ecimen			(1p)	0	009	850	1000	1150								
Speci		Defl (Exts.	(1n.)				THOMISE					.067				
	No. 2	Defl (Rod)		0	.036	l	.108		.151	.168	.181	1				
		Load	(1b) (1n.)	0	800	1280	1600	1700	1750	1850	1900	1950				
		Defl. Exts)	(1n.)					.032								
	No. 1	Defl. (Rod)		0	.023	.051	.075									
	First.	Load	(1P)	0	410	099	006	1080								

Radiation-Cryotemperature Test Data: Material K

Skyspar A423-SA9185

≪/€ Measurements (Raw Data)

Material Type Thermal Control Coating

Choost	Throat	Average	Radiation E	Exposure	Solar	Cal.	Calculated	1 Total	Normal	Emittance	9(
nen	ation	Gamma		/cm ²	Absorp	Spa	Spacimen 1	Measurement	1	Temperatures	35
No.	Temp.	[ergs/gm	五>2.9	E<0.048	tance	100°K	УК	300°K	N_{o}	500°K	OK
	(관)	[(p)	Mev	ΘM	8	V	مر/و م	Ψ	8/E	9	4/6
Average		0	0	0	. 288	.826	.349	.882	.327	.883	.326
EW 14	·	***			324	.830	154	890	420	888	421
EW 26	125	4.92(9)	1.3(15)	9.6(13)	374	.830	451	890	420	888	.421
EW 37	· · · · · · · · · · · · · · · · · · ·				374	830	1,51	890	420	888	421
EW 16	V. Westerne F	ST SECOLO		14 444 0000	.351	835	420	890	394	903	389
EW 17	والمناسبة والمناورة	1.05(10)	2.5(15)	3.7(14)	.351	.835	.420	.888	.395	895	392
EW 22					.351	835	, 420	890	394	.903	.389
EW 21	man a second				.324	835	388	895	362	868	.361
国 25	on Post Adams.	2.0(10)	4.0(14)	4.2(13)	.324	835	388	.895	362	895	.362
EW 29	-320	Missail.			.324	.835	.388	.895	.352	.895	.362
EW 7	Yes about 10	COT MANUAL COMPANIES			.325	.838	.388	890	.355	891	.365
EW 8		3.0(10)	4.0(15)	4.2(14)	.325	840	.387	468	.354	890	.365
EW 9					334	838	399	889	376	882	379
EW 40	-	erthedron		The state of the s	405	828	489	891	.455	.901	.450
EW 41	Westblack of	5.0(9)	8.5(14)	(77)	405	.828	489	890	455	889	.456
EW 42	-423			/ / - /	405	828	489	891	455	895	.453
EW 10	- September 2				.425·	.837	. 504	892	.473	.903	794.
EW 11		1.0(10)	3.0(15)	7.0(15)	.422	.837	.504	892	.473	. 903	794.
EW 12					.412	.837	492	892	1462	.903	.456

*Average - refers to an average value for all unirradiated specimens. ** μ .92(9) read as μ .92 x 10^9

TABLE A-58

Radiation-Cryotemperature Test Data: Material K Skyspar A423-SA9185

e measurements	(AVE.)	Ð		T TOO DIT	at by Vertice	INCUCLICE BY 1/2 LINCE BORNESS CONTROL COURT
1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	Average Ra	adiation E	Exposure	Average 🗠	c//8 Measurements	ents
Temp.	Gamma	trons	/cn2	Soecimen T	Temperature	
(4 ₀)	args/gm (C)	6	E <0.048 ev	Х ₀ 00Т	300°K	2005K
		0		0.349	0.327	0.326
125	4.92(9)*	1.3(15)	9.6(13)	0.541	0.420	0.421
	1.05(10)	2.5(15)	3.7(14)	0.420	468.0	0.390
		0	0			
-320	2.0(10)	4.0(14)	4.2(13)	0.388	0.362	0.362
	3.0(10)	4.0(15)	4.2(14)	0.391	0.368	0.370
		0	0		-	1
-423	5.6(9)	8.5(14)	2.1(15)	0.489	0.455	0.453
	2.0(10)	3.0(15)	7.0(15)	0.500	0.470	0.463
ALE STREET, ST	CHARLES AND	A STATE OF THE PROPERTY OF THE	THE RESERVE THE PROPERTY OF THE PARTY OF THE	THE COURT SERVICE TO AN ADMINISTRATION OF THE PERSON OF TH	T. SCHOOL STREET STREET STREET STREET,	The same of the sa

*Read 4.92(9) as 4.92 x 109

Radiation-Cryotemperature Test Data: ; Material L

W-49-BC-12

≪/€ Measurements (Raw Data)

Material Type Thermal Control Coating

_	7	Average Radiation	5	Exposure	Solar	Cal	Calculated	d Total	Normal	Emittence	e.
near	ation	9		/cm ²	Absorp.	Spe	Specimen 1	10	1	Temperatures	35
No.	Temp.	[ergs/gm	E>2.9	日	tance	1000K	Уο	300	3000K	500	500°K
	Ž.	(S)	Меу	67	8	v	ه/د م	Ψ	8/4	V	8/10
Average		0	0	0	646.	648	1.12	.901	1.05	.925	1.02
AC 30		MINITED TO	orestal idi		846	840	1.13	.893	1.06	.923	1.03
AC 31	125	4.75(9)**	1.3(15)	1.0(14)	846	840	1.13	893	1.06	923	1.03
AC 33			8		846.	.840	1.13	.893	1.06	.923	1.03
AC 7		the anticological and anticological and anticological anti	* OR SHIPME	A A A A A A A A A A A A A A A A A A A	.951	.856	1.11	895	1.06	925	1.03
AC 8		8.0(9)	2.2(15)	3.2(14)	951	856	1	895	1.06	925	1.03
AC 32		ile Sens		Д -пунк	951	856	1.11	895	1.06	.925	1.03
AC 16	RCAMPACA		KU MP	eurenen k	www.u.es	857	1.10	890	1.06	. 910	1.04
AC 17		2.0(10)	4.0(14)	1.0(13)	arama i	.857	1.10	.890	1.06	910	1.04
AC 38	-320	en e			945	.856	1.10	890	1.06	. 910	1.04
AC 21			·	(CHANGE)	546	856	1.10	.882	1.07	605	10.1
AC 36		3.0(10)	4.0(15)	2.0(14)	546.	.857	1.10	.882	1.07	606	1.04
AC 42				AB (1442)	546.	857	1.10	890	1.06	.910	1.04
AC 23				ostana A	946	.836	1.13	889	1.07	918	1.03
AC 24	10 July 10 Jul	5.0(9)	8.5(14)	3.0(15)	846	836	1 3	889	1.07	918	1.03
AC 25	-423			ww.t.	846	836	1.13	889	1.07	918	1.03
AC 13		Meal Sons			846	842	1.12	.883	1.07	.912	1.04
AC 14		1.0(10)	3.0(15)	7.0(15)	.948	.847	1.12	.883	1.07	912	1.04
AC 15	-0.487)			en en en	846.	.847	1.12	.883	1.07	.912	1.04
-				ACTUAL STREET,	MANAGEMENT OF THE PARTY OF THE	A VARABLES DE L'ARTINGUES.	F-9-77-2-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	MANUFACTURE OF THE PROPERTY OF THE PERSON OF	STREET, STREET	SALES SERVICES SERVIC	SEATHER POPULATION OF SEATHER

*Average - refers to an average value for all unirradiated specimens. **Read \pm .75(9) as \pm .75 x 109

239

TABLE A-60

Radiation-Cryotemperature Test Data: Material L W-49-BC-12

, 9 (a) The same same same same same same same sam	168 (AV8.)			Materi	Material Type The	Thermal Control (Coating
	Average Ra	Radiation Ex	Exposure	Average ch/8	./6 Measuraments	30 ts	
		Neutrons,	/cm ²	Specimen T	Temperature		
(P)	[ergs/gm (C)]	E>2.9 Mev	E< 0.048 ev	M ₀ 001	У ₀ 00£	500°K	
NO DESCRIPTION OF THE COLUMN TWO COLUMN TO COLUMN TWO COLUMN TO COLUMN TWO CO		0		1.12	1.05	1.02	
CV	4.75(9)*	1.3(15)	1.0(14)	1.13	1.06		
L ZOŚWIERNY PORTOCKIER TO PORT	(6)0.	2.2(15)	3.2(14)		1.06	1.03	٠
ement cantelli	0	0	0		• •	r कि कि प्राप्त कर होता हुए हैं - 	
	2.0(10)	1.0(14)	1.0(13)	1.10	1.06	1.04	
	3.0(10)	4.0(15)	2.0(14)	1.10	1:07	1.04	
	0	0	0				
123	5.6(9)	8.5(14)	3.0(15)	1.13	1.07	1.03	
	2.0(10)	3.0(15)	7.0(15)	1.12	1.07	1.04	

*Read 4.75(9) as 4.75×10^9

Figure A-1 Monochromatic Reflectivity and Absorptivity: Material K (Skyspar A423-SA9184); Unirradiated; Ambient Temperature

Figure A-3 Monochromatic Reflectivity and Absorptivity: Material K (Skyspar A423-SA9184); High Dose; Ambient Temperature

Figure A-4 Monochromatic Reflectivity and Absorptivity: Material K (Skyspar A423-SA9184); Low Dose; LN₂ Temperature

Monochromatic Reflectivity and Absorptivity: Material K (Skyspar A423-SA9184); High Dose; LN₂ Temperature

Figure A-5

245

Figure A-6 Monochromatic Reflectivity and Absorptivity: Material K (Skyspar A423-SA9184); Low Dose; LH₂ Temperature

247

Figure A-8 Monochromatic Reflectivity and Absorptivity: Material L (W49-BC-12); Unirradiated; Ambient Temperature

249

Figure A-12 Monochromatic Reflectivity and Absorptivity: Material L (W49-BC-12); Low Dose; LH2 Temperature

REFERENCES

- 1. Park, W., <u>Test Analysis of the 3-Mw Ground Test Reactor</u>. Convair-Fort Worth Report MR-N-254 (NARF-61-15T, 31 May 1961). U
- 2. Romanko, J., and Dungan, W. E., <u>The Neutron Flux Spectrum of the Ground Test Reactor</u>. Convair-Fort Worth Report FZM-929 (June 1957). U
- 3. <u>Sandia-Convair Irradiation Test No. 1, Addendum 1.</u> Convair-Fort Worth Report MR-N-243-1 (NARF-59-22R, 15 September 1959). SRD
- Bell, J. R., and Miles, J. K., Calibration of Foils for Neutron Flux Measurements. GD/FW Report No. MR-N-279 (NARF-61-18T, 5 June 1961). U
- 5. Radiation Effects Facility Capabilities. General Dynamics/Fort Worth Report FZK-9-163A (NARF-61-7T, 1 June 1962). U
- 6. Brandenberg, W. M., Optical Properties of Thermal-Control Coatings Irradiated with Gamma Rays and Neutrons. GD/Astronautics Report ERR-AN-237 (December 1962). U
- 7. Kerlin, E. E., and Smith, E. T., <u>Investigation of Combined Effects of Radiation and Vacuum of Engineering Materials</u>.

 First Quarterly Progress Report, 9 November 1961 through 8 February 1962. GD/FW Report FZK-142 (20 March 1962). U
- 8. Kerlin, E. E., and Smith, E. T., <u>Investigation of Combined Effects of Radiation and Vacuum on Engineering Materials</u>.

 Second Quarterly Progress Report, 9 February 1962 through 8 May 1962. GD/FW Report FZK-147 (4 June 1962). U
- 9. Kerlin, E. E., and Smith, E. T., <u>Investigation of Combined</u>
 <u>Effects of Radiation and Vacuum and of Radiation and Cryogenic</u>
 <u>Temperatures on Engineering Materials.</u> Third Quarterly Progress
 Report, 9 May 1962 through 31 July 1962. GD/FW Report FZK-152
 (15 August 1962). U